8.3 CI for μ, σ NOT known (old 8.4)

GOALS:

- 1. Learn the properties of the *student-t* distribution and the t-curve.
- 2. Understand how degrees of freedom, df, relates to *t-curves*.
- 3. Recognize that t-curves approach the SNC as df increases.
- 4. Perform the *t-interval* procedure to find the confidence interval when σ is not known.

Study 8.3,# 109-113,119,123-127(75-91*),

 $133(\sim 97*)$ *old 8.4

Class Notes: Prof. G. Battaly, Westchester Community College, NY

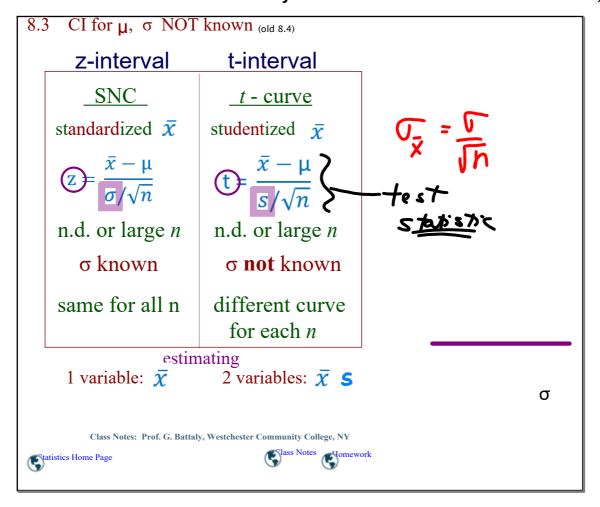
8.1 Estimating the Population Mean, µ

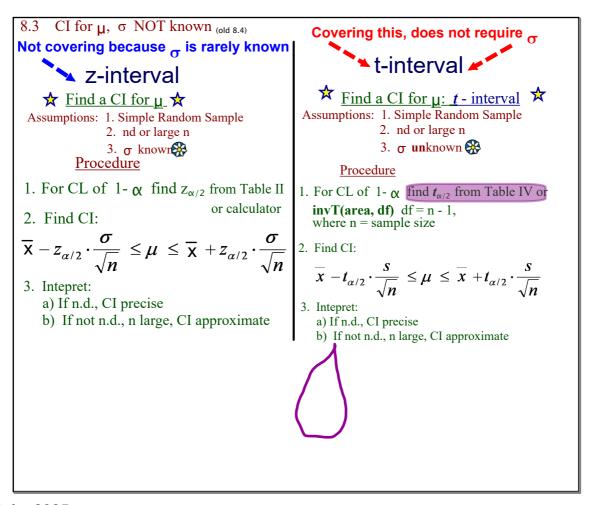
Overview

- 1. Want to find unknown mean from unknown population.
- 2. Find a sample mean.
- 3. Use sample mean to estimate population mean.

POINT ESTIMATE

- 4. Know that sample mean is not expected to = population mean.
- 5. If n.d., can find an interval with the level of confidence wanted using area under the normal curve.


6. Use procedure:


z-interval t-interval

8.3 CI for μ , σ NOT known (old 8.4)

In more realistic situations, σ is NOT known. Need to use sample s instead of σ

But, can NOT use standardized version of \overline{X} ie: no z score

Class Notes: Prof. G. Battaly, Westchester Community College, NY

8.3 CI for μ , σ NOT known (old 8.4)

Wikipedia: Why is this procedure called the **student t-test?**

The <u>t-statistic</u> was introduced in 1908 by <u>William Sealy Gosset</u>, a chemist working for the <u>Guinness brewery</u> in <u>Dublin</u>, <u>Ireland</u>. "Student" was his <u>pen name</u>. [1][2][3][4]

Gosset had been hired owing to <u>Claude Guinness</u>'s policy of recruiting the best graduates from <u>Oxford</u> and <u>Cambridge</u> to apply <u>biochemistry</u> and <u>statistics</u> to Guinness's industrial processes.[2] Gosset devised the *t*-test as an economical way to monitor the quality of <u>stout</u>. The *t*-test work was submitted to and accepted in the journal <u>Biometrika</u> and published in 1908.[5] Company policy at Guinness forbade its chemists from publishing their findings, so Gosset published his statistical work under the pseudonym "Student" (see <u>Student's *t*-distribution</u> for a detailed history of this pseudonym, which is not to be confused with the literal term <u>student</u>).

σ

Class Notes: Prof. G. Battaly, Westchester Community College, NY

© G. Battaly, 2025

8.3 CI for μ , σ NOT known (old 8.4)

 $\begin{array}{ccc}
\underline{SNC} & \underline{t - curve} \\
\text{only 1 variable} & \underline{z} & \text{variables}
\end{array}$

When σ is known, there is only one parameter to estimate, the population μ . Therefore, there is only one variable, \bar{x}

When σ is NOT known, there are two parameters to estimate: the population μ , and the population standard deviation, σ . Therefore, there are 2 variables, \bar{x} and s

SNC

standardized \bar{x}

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

n.d. or large n σ known

same for all n

t - curve

studentized $\bar{\chi}$

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

n.d. or large *n*

σ not known

different curve for each *n*

Many t-curvesdifferent curve for each n. When you change n, change $\hat{\sigma}_x$ and change shape.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

8.3 CI for μ , σ NOT known (old 8.4)

calculator demo (not required):

- 1. $y_1 = normalpdf(x,0,1)$
- 2. $y_2 = tpdf(x,1)$
- 3. use stat to enter 2, 4, 20 into L1
- 4. $y_3 = tpdf(x,L1)$
- 5. $y_4 = tpdf(x, 100)$

window: -3<x<3, 0<y<0.4

not required

geogebra t-curve demo

df = n-1

For df =1, the t curve is wider and shorter than SNC. What does this tell us about the two curves?(Hint: shape)

As df increases, t- curves --> snc

8.3 CI for μ , σ NOT known (old 8.4)

Properties of *t-curve*

- 1. Total area under curve = 1.
- 2. Approaches horizontal axis as asymptote
- 3. Symmetric about 0.
- 4. As the df increases, *t*-curves --> SNC

same as the

SNC

Class Notes: Prof. G. Battaly, Westchester Community College, NY

8.3 CI for μ , σ NOT known (old 8.4)

Degrees Of Freedom

The number of values in a study that are free to vary.

eg: If have 5 pieces of fruit in a bowl, and you eat one

each day.

On Day 1, you have a choice of 5

Day 2 Day 3

Day 4 2 Day 5 NO choice

For n = 5, free to choose 4 times:

$$df = n - 1 = 4$$

Degrees of Freedom refers to the maximum number of logically independent values, which are values that have the **freedom to vary**, in the data sample.

CI for μ, σ NOT known (old 8.4)

★ Find a CI for u: t - interval ★

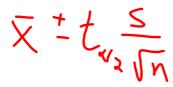
Assumptions: 1. Simple Random Sample

2. nd or large n 3. **o un**known

Procedure

1. For CL of 1- α df = n - 1, where n = sample size

$$\overline{x} - t_{\alpha/2} \cdot \frac{s}{\sqrt{n}} \le \mu \le \overline{x} + t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$


- - a) If n.d., CI precise
 - b) If not n.d., n large, CI approximate

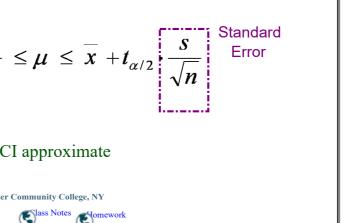
We will use the t-interval procedure on the calculator. So, do not need to specify the t value **DO** need to specify the $_{lpha/2}$ value

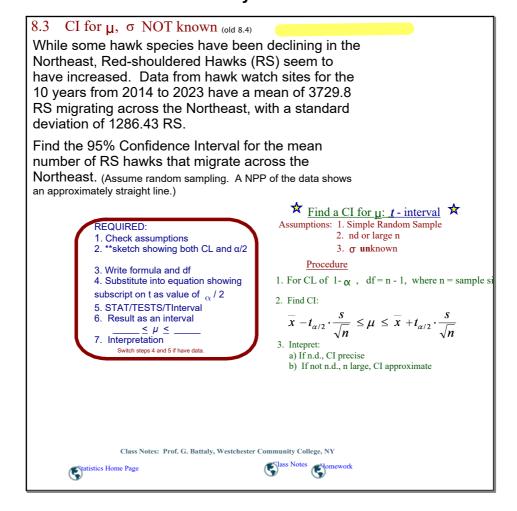
CI for μ, σ NOT known (old 8.4)

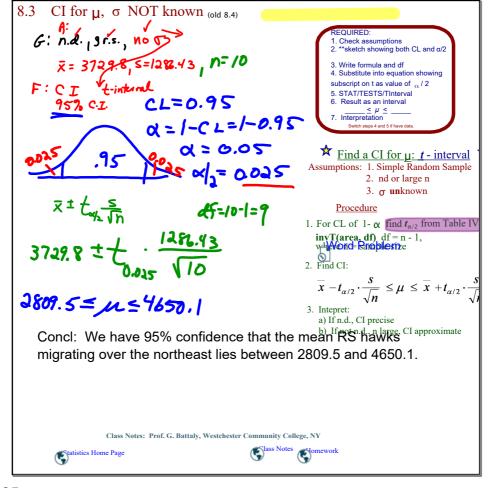
Assumptions: 1. Simple Random Sample

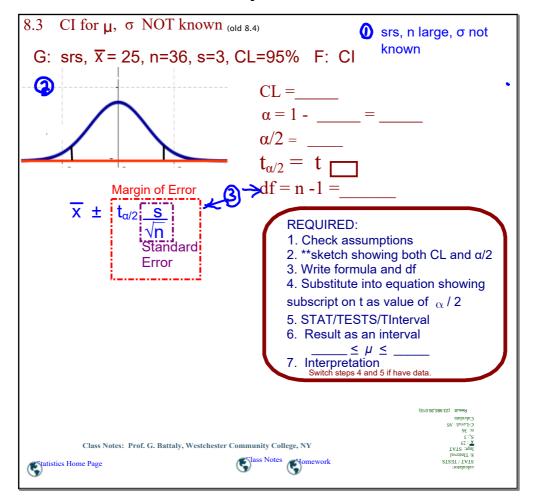
2. nd or large n
3. σ unknown

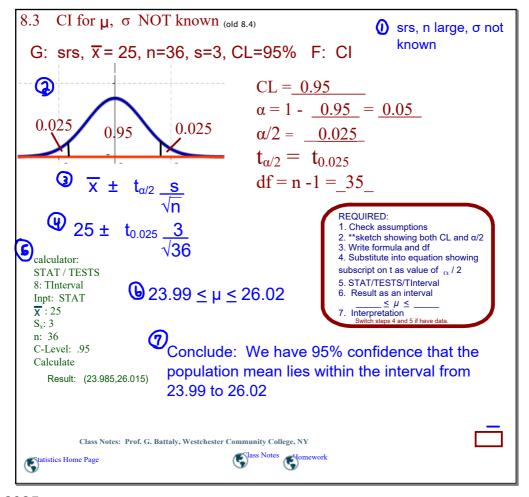
Procedure

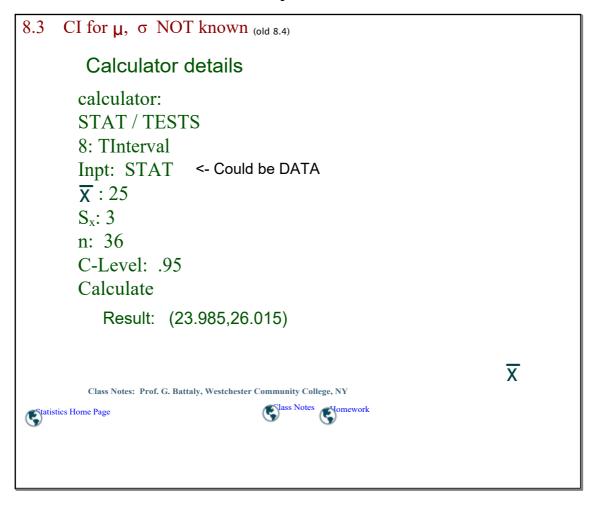

- 1. For CL of 1- α df = n - 1, where n = sample size
- 2. Find CI:

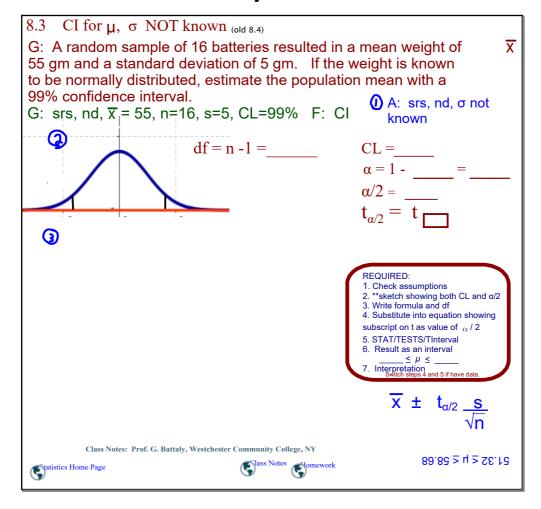

$$\overline{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}$$

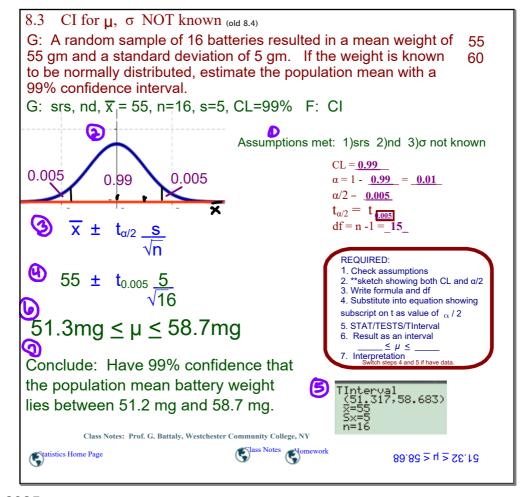

- 3. Intepret:
 - a) If n.d., CI precise
 - b) If not n.d., n large, CI approximate

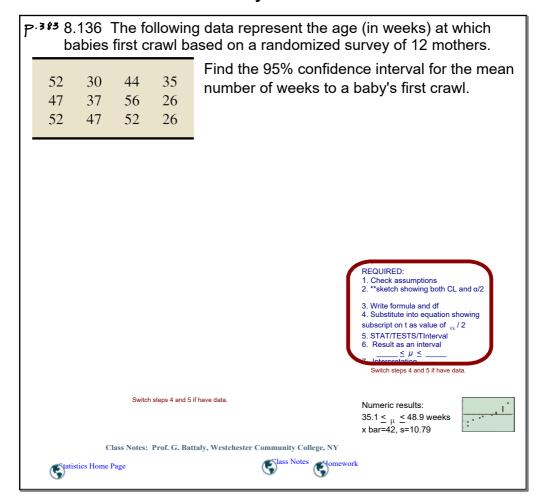


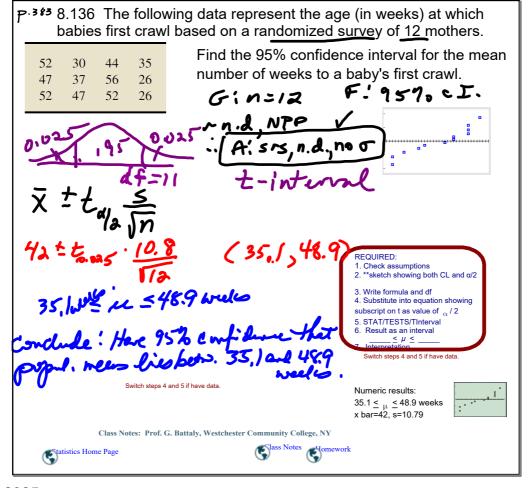











8.3 CI for μ ,	σ NOT known	(old 8.4)		
G: A random sample of 16 batteries resulted in a mean weight of 55 gm and a standard deviation of 5 gm. If the weight is known to be normally distributed, estimate the population mean with a 99% confidence interval.				
G:			F: _	
				REQUIRED: 1. Check assumptions 2. ***sketch showing both CL and $\alpha/2$ 3. Write formula and df 4. Substitute into equation showing subscript on t as value of $\alpha/2$ 5. STAT/TESTS/TInterval 6. Result as an interval $= \mu \leq -$ 7. Interpretation Switch steps 4 and 5 if have data.
				88.83 ≥ μ ≥ SE.13
Class Note	es: Prof. G. Battaly, Westcheste	r Community College, NY Slass Notes Gomework		\overline{x}

© G. Battaly, 2025

© G. Battaly, 2025