8.2 Margin of Error, Sample Size (old 8.3)

GOALS:

- 1. Understand the Margin of Error is a measure of sampling error, and is directly proportional to the standard error.
- 2. Understand how the Margin of Error relates to the confidence interval for a population mean.
- 3. Recognize that the Margin of Error is decreased when sample sizes are increased.
- 4. Find sample sizes needed for a desired Margin of Error

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

©Gertrude Battaly, 2016

8.3 Margin of Error, Sample Size

What if the interval that you have found is not small enough? What can you do?

eg: medicine - too large a dose dangerous airplane parts - require precise fit, etc.

What can you do to narrow the interval?

$$\overline{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

Statistics Home Page ©Gertrude Battaly, 2014

What can you do to narrow the interval?

$$\overline{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Focus in the
$$\pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Can you change σ ?

NO. σ is a population parameter. It is fixed for the population.

CAN:

- 1. decrease z by reducing CL- not usually desirable, eg: 99% conf to 90% confident
- 2. increase *n* by increasing the sample size

Class Notes: Prof. G. Battaly, Westchester Community College, NY

8.3 Margin of Error, Sample Size

Margin of Error

$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Relationship betw. E and the standard error?

$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

What is the standard error?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page ©Gertrude Battaly, 2014

2 © G. Battaly 2018

Margin of Error

$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Relationship betw. *E* and the *standard error*?

$$E = z_{\alpha} / 2 \cdot \frac{\sigma}{\sqrt{n}}$$

What is the standard error?

Ox = In Stel. error of the mean

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Pag

©Gertrude Battaly, 2014

Homework

...from Ch.7...

7.2 Mean and Standard Dev of Sample Mean

Mean of the Sample Mean

$$\mu_{\overline{x}} = \mu$$

Standard Deviation of the Sample Mean

$$\sigma_{_{\overline{x}}} = \underline{\sigma}_{_{\overline{\sqrt{n}}}}$$

Standard Error (of the Mean)

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

©Gertrude Battaly, 2014

$$\bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

G: E = 0.047

- a) F: length of CI b) If $\overline{\mathbf{x}} = 0.205$, F: CI
- c) sketch (number line)

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

©Gertrude Battaly, 2014

Class Notes __Homewo

8.3 Margin of Error, Sample Size

$$\overline{x} \pm \left(z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right) \in$$

G: E = 0.047

a) F: length of CI b) If $\overline{X} = 0.205$, F: CI

a) 2(0.047) = 0.094 length of interval

b) 0.205 ± 0.047 (0.1580252) $0.156 \le m \le 0.252$

to get bounds of the interval, add and subtract the margin of error

simple arithemetic

c) sketch

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

©Gerirude Ballary, 2014

Class Notes Homewo

What about the sample size? How large should *n* be to get a desired Margin of Error

$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

EIn = Zalz. O

Solve the above equation for *n*:

he above equation for
$$n$$
:
$$n = \left(\frac{z_{\alpha/2} \sigma}{E}\right)^2$$

$$n = \left(\frac{z_{\alpha/2} \sigma}{E}\right)^2$$

$$n = \left(\frac{z_{\alpha/2} \sigma}{E}\right)^2$$

Use $z_{\alpha/2}$ score for desired confidence with E for desired precision. Round up to next integer.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

©Gertrude Battaly, 2014

8.3 Margin of Error, Sample Size

What about the sample size? How large should *n* be to get a desired Margin of Error

$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Solve the above equation for *n*:

$$n = \left(\frac{z_{\alpha/2} \, \sigma}{E}\right)^2$$

Use $z_{\alpha/2}$ score for desired confidence with *E* for desired precision. Round up to next integer.

NOTE: This requires finding the value of $z_{\alpha/2}$

Find $z_{\alpha/2}$ Use the calculator: $z_{\alpha/2} = invNorm(\alpha/2,0,1)$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

©Gertrude Battaly, 2014

© G. Battaly 2018 5

```
8.3 Margin of Error, Sample Size

G: body fat; n=27,  = 22.46%, n.d., σ=4.10%

female graduate physical therapy students

c) F: explain E in terms of accuracy of estimate

d) F: n ∋ E=1.55% with 99% Confidence

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Class Notes: Prof. G. Battaly, 2014

Class Notes
```


95% CI: CL=0.95, α =1-0.95=0.05; α /2=0.025; $z_{\alpha/2}$ =invNorm(0.025,0,1)=-1.96

c) F: explain E in terms of accuracy of estimate

For a sample size of n=27, we have 95% confidence that the population mean lies within the Margin of Error, 1.55%, of the sample mean of 22.46% body fat.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

©Gertrude Battaly, 2014

