GOALS:

- 1. Understand properties of:
 - a) Density Curves
 - b) Normal Curves
 - c) Standard Normal Curve
- 2. Relate area under the curve to proportions of the population represented by the curve.

Study Ch. 6.1, #5-23, 39(33)

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

©Gertrude Battaly, 2016

Homewor

© G. Battaly 2020

Dynamic Normal Curve

Area of Normal Curve

Standard Normal Curve:

$$z = \underline{x - \mu}$$

SNC
$$\mu = 0$$
, $\sigma = 1$

σ

connection between data & SNC:

- 1. convert x values to z values
- 2. then determine area and probability.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

©Gertrude Battaly, 2016

Homework

6.1 Normal Distribution

Area of Normal Curve

Standard Normal Curve:

$$z = \underline{x - \mu}$$

z - score is the number of standard deviations away from the mean of a specific item of data

If you earn a grade of 80 on Test #1, and statistics for the grades are $\overline{X} = 83$, s = 10, what is your z score? (Use statistics as estimates.)

Class Notes: Prof. G. Battaly, Westchester Community College, NY

©Gertrude Battaly, 2016

Area of Normal Curve

Standard Normal Curve:

$$z = \underline{x - \mu}$$

z - score is the number of standard deviations away from the mean of a specific item of data 2 = <u>X</u>-X 2

If you earn a grade of 80 on Test #1, and statistics for the grades are $\overline{X} = 83$, s = 10, what is your z score? (Use statistics as estimates.)

 $=\frac{3}{10}$

z = -0.3

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

©Gertrude Battaly, 2016

Class Notes: Prof. G. Battaly, Westchester Community College, NY the Page ©Gertrude Battaly, 2016

Homework

Homework

Statistics Home Page

Which has the wider spread?

$$\mu = 1$$
, $\sigma = 2$

$$\mu = 2, \quad \sigma = 1$$

 ${\bf Class\ Notes:\ Prof.\ G.\ Battaly,\ Westchester\ Community\ College,\ NY}$

Statistics Home Page

©Gertrude Battaly, 2016

__Homework

Normal Distribution

Which has the wider spread?

$$\mu = 2$$
, $\sigma = 1$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

©Gertrude Battaly, 2016

Given: n.d.

curve 1:
$$\mu = -4$$
, $\sigma = 3$

$$\sigma = 3$$

curve 2:
$$\mu = -4$$
, $\sigma = 6$

$$\sigma = 6$$

True or False?

Same Shape?

Same Center?

n.d.: normal distribution

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

©Gertrude Battaly, 2016

Normal Distribution

Given: n.d.

n.d.: normal distribution

curve 1:
$$\mu = -4$$
, $\sigma = 3$

$$\sigma = 3$$

curve 2:
$$\mu = -4$$
, $\sigma = 6$

$$\sigma = 6$$

True or False?

Same Shape? F

Same Center? T

both bell-shaped; but $\sigma = 6$ is flatter and wider

Class Notes: Prof. G. Battaly, Westchester Community College, NY

©Gertrude Battaly, 2016

© G. Battaly 2020 9

© G. Battaly 2020

