Study Ch. 4.6, p. 202 # 115,119

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Conditional Probability Rule:

If A and B are any two events with P(A) > 0,

then
$$P(B/A) = P(A \& B)$$

 $P(A)$

The probability that event B occurs, under the condition that it is given that event A has occurred.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

INDEPENDENT EVENTS:

Event B is INDEPENDENT of event A

if:

$$P(B/A) = P(B)$$

P(A/B) = P(A)

Two events are independent if: the occurrence of one does not change the probability of the occurrence of the other.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

p. 203 # 116

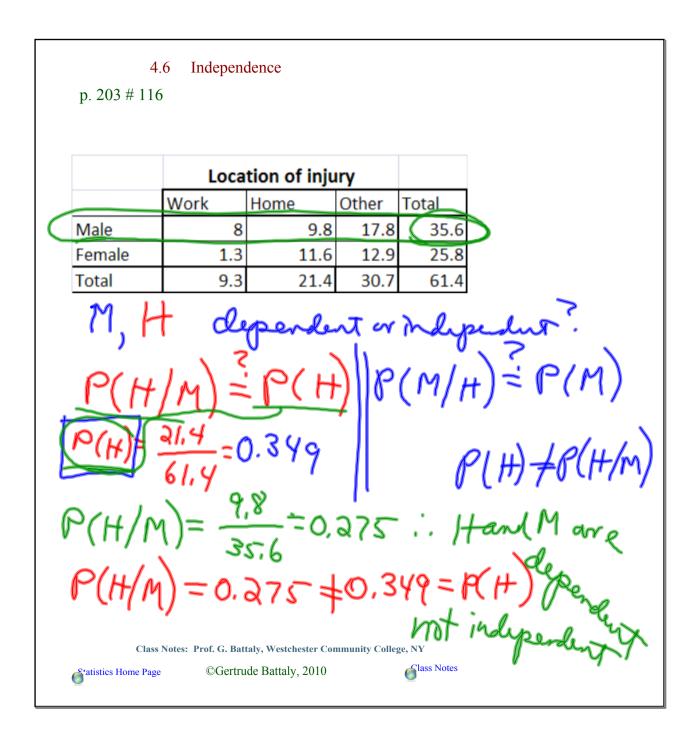
	Loca			
	Work	Home	Other	Total
Male	8	9.8	17.8	35.6
Female	1.3	11.6	12.9	25.8
Total	9.3	21.4	30.7	61.4

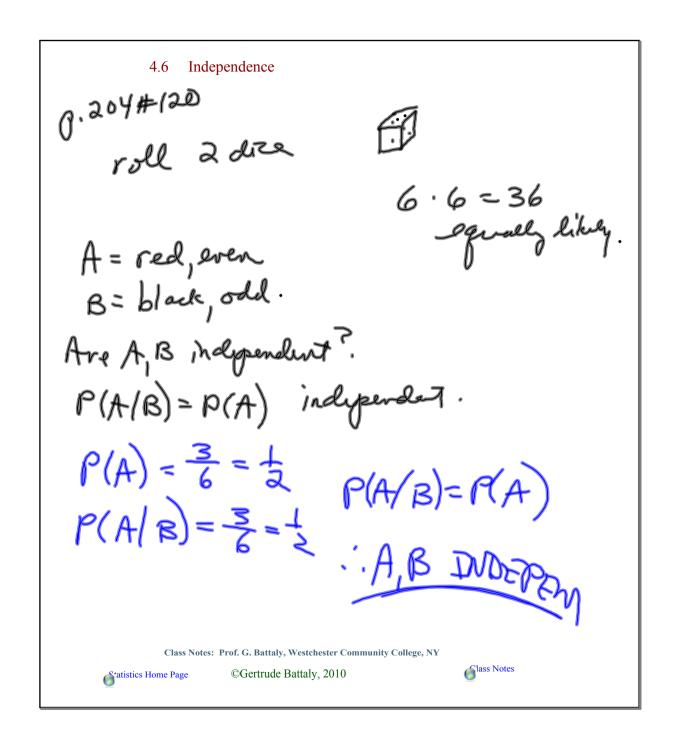
Find:

- a) P(Work)
- b) P(work/female)
- c) Are having an injury at work and being a female independent events? Why?
- d) Is the event that an injured person is male independent of the event that an injured person was hurt at home?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page


p. 203 # 116


	Loca			
	Work	Home	Other	Total
Male	8	9.8	17.8	35.6
Female	1.3	11.6	12.9	25.8
Total	9.3	21.4	30.7	61.4

a)
$$P(W) = \frac{9.3}{61.4} = 0.151$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

