15.4 Inferences in Correlation

GOALS:

- 1. Recognize the assumptions for regression inferences
- 2. Understand that the computed statistic, the correlation coefficient, r, is an estimate of the population correlation coefficient, ρ
- 3. Perform a t-test to determine if two variables are linearly correlated: if $\rho \neq 0$, $\rho > 0$, or $\rho < 0$

Study Ch. 15.4, # 99, 101, 109-113, 114

Class Notes: Prof. G. Battaly, Westchester Community College, NY

15.4 Inferences in Correlation Study time and test score:

hours	test score
x	y
10	92
15	81
12	84
20	74
8	85
16	80
14	84
22	80

Is there a correlation between study time and test grades?

a=94.867 and b= -0.846

for regression equation,

 $r = -0.7749, r^2 = 0.6005$

BUT, What confidence do we have?

Is this **sample** \mathbf{r} a good estimate of the population parameter, \mathbf{p} ?

 ${\bf Class\ Notes:\ Prof.\ G.\ Battaly, We stchester\ Community\ College, NY}$

15.4 Inferences in Correlation

Study time and test score:

hours	test score
x	у
10	92
15	81
12	84
20	74
8	85
16	80
14	84
22	80

Statistics vs Parameters

$$y = a + b x$$

 $a=94.867$ and $b=-0.846$
for regression equation,
 $r=-0.7749$, $r^2=0.6005$

estimating
$$\beta_0$$
 β_1 population parameters $\hat{y} = 94.867 - 0.846 \text{ x}$

$$r=-0.7749$$
 ρ ρ

$$r^2 = 0.6005$$
 ρ^2

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

B

B

15.4 Inferences in Correlation

Assumptions for **Regression Inferences**:

1. **Population regression line exists**: for each predictor variable, x, there is a population response variable

$$y = \beta_0 + \beta_1 x$$

2. Equal standard deviations :

the conditional standard deviations of the response χ variable is the same for all values of the predictor variable.

3. Normal populations:

for each value of the predictor variable, the conditional distribution of the response variable is a normal distribution.

4. Independent observations :

observations of the response variable are independent of each other.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

solution w/o confidence

15.4 Inferences in Correlation

Fetal Development:

Age in weeks & Growth - Length of Crown-Rump in mm.

Age	Length
(weeks	(mm)
10	66
10	66
13	108
13	106
18	161
19	166
19	177
23	228
25	235
28	280

Is there a correlation between age and crown-Rump Length?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

15.4 Inferences in Correlation

Fetal Development:

Is there a correlation between Age in weeks & Growth - Length of Crown-Rump in mm. age and crown-Rump Length?

Age	Length
(weeks	(mm)
10	66
10	66
13	108
13	106
18	161
19	166
19	177
23	228
25	235
28	280

strong positive linear relationship. BUT, What confidence do we have?

Is this **sample r** a good estimate of the population parameter, ρ ?

Note that r alone is not always easily interpreted. With only 2 points, would get perfect correlation. Larger samples generally result in lower r. If r = 0.4 or -0.35, should we decide that not linearly correlated? It doesn't seem likely that it is, but maybe it's just highly variable. So --- need a confidence level or significance level.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

15.4 Inferences in Correlation

Fetal Development:

Age in weeks & Growth - Length of Crown-Rump in mm.

Age	Length
(weeks	(mm)
10	66
10	66
13	108
13	106
18	161
19	166
19	177
23	228
25	235
28	280

At the 1% significance level, do the data provide sufficient evidence to conclude that age and crown-rump length are linearly correlated?

Assume the popul. regr. line exists, = stdev, ~ n.d., independent observations.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

15.4 Inferences in Correlation

Fetal Development:

Age in weeks & Growth - Length of Crown-Rump in mm.

Length
(mm)
66
66
108
106
161
166
177
228
235
280

At the 1% significance level, do the data provide sufficient evidence to conclude that age and crown-rump length are linearly correlated?

Assume the popul. regr. line exists, = stdev, ~ n.d., independent observations.

- 1. Assump met. H_0 : $\rho = 0$ H_a : $\rho \neq 0$
- 2. α = 0.01 2-tailed .oo5

- 4. $p = 1.778 (10^{-10}) = 0.000$
- 5. $p = 0.0000 < 0.10 = \alpha$: rej. H_0

6. Conclude: Age and crown-rump length are linearly correlated.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

LinRegT-Test

Xlist: L1 (list where entered x value Ylist: L2 (list where entered y value β and ρ : $\neq 0$ < 0 > 0 Calculate

The systolic blood pressure was measured for 30 people of different ages.

Age		Systolic B
	39	144
	59	140
	45	138
	47	145
	65	162
	46	142
	67	170
	42	124
	67	158
	56	154
	64	162
	56	150

Age and Blood Pressure:

Assume regression assumptions are met.

At the 1% significance level, do the data provide sufficient evidence to conclude that **positive linear** correlation exists between age and systolic blood pressure?

- a) test
- b) look at residuals, and interpret, re: assumptions

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

Class Notes

Homework

