13.4 Chi-Squared Independence Test

Class Notes: Prof. G. Battaly, Westchester Community College, NY

©Gertrude Battaly, 2014

13.4 Chi-Squared Independence Test

At the 1% s.l., does an association exist between educational level and diabetic state?

Educ	Diabetic	Not Diabetic	Total
< HS	33	218	251
HS	25	389	414
< C	20	393	413
С	17	178	195
TOTAL	95	1178	1273

$$\chi_{\tau}^2 = \sum \left[\frac{(O - E)^2}{E} \right]$$

OBSERVED values in Red TOTALS in Green

How can we find the EXPECTED values?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

© Gertrude Battaly, 2014

Class Notes Homework

13.4 Chi-Squared Independence Test

			10
Educ	Diabetic	Not Diabetic	Total
< HS	33	218	251
HS	25	389	414
< C	20	393	413
С	17	178	195
TOTAL	95	1178	1273

OBSERVED values in Red TOTALS in Green

How many HS graduates would we EXPECT to be diabetic?

Start:

> Proportion of total that have HS education?

414 / 1273

> Find this proportion of the total number that are diabetic.

ie: Multiply by number with Diabetes:

30.896

$$= / \text{Intercept}$$

$$\frac{2}{2H} = 3$$

$$\chi_{\tau}^{2} = \sum_{n=1}^{\infty} \left(\frac{C}{n} \right)$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Statistics Home Book © Gertrude Battaly, 2014 Class Notes Homew

Y²

13.4 Chi-Squared Independence Test

	Educ	Diabetic	Not Diabetic	Total
<	HS	33	218	251
•	HS	25 30.896	389	414
<	< C	20	393	413
	С	17	178	195
TC	OTAL	95	1178	1273

OBSERVED values in Red TOTALS in Green

How many C graduates wouldwe EXPECT to be diabetic?

Start:

> Proportion of total that have HS education?

> Find this proportion of the total number that are diabetic.

ie: Multiply by number with Diabetes:

14.552

$$= / 7, 5/3$$

$$x_{\tau}^{2} = \sum \left[\frac{(O-E)^{2}}{E} \right]$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Statistics Home Page

©Gertrude Battaly, 2014

Class Notes Homework

Chi-square Test for Independence

13.4 Chi-Squared Independence Test

				,	TO
	Educ	Diabetic	Not Diabetic	Total	
<	HS	33	218	251	_
	HS	25 30.896	389	414	_
<	< C	20	393	413	_
٠	С	17 14.552	178	195	-
TO	OTAL	95	1178	1273	_

OBSERVED values in Red OTALS in Green

How many C graduates wouldwe EXPECT to be diabetic?

Start:

> Proportion of total that have HS education?

195 / 1273

> Find this proportion of the total number that are diabetic.

ie: Multiply by number with Diabetes:

13.4 Chi-Squared Independence Test

OBSERVED values in Red TOTALS in Green

Educ	Diabetic	Not Diabetic	Total
< HS	33	218	251
HS	25 30.896	389	414
< C	20	393	413
С	17 14.552	178	195
TOTAL	95	1178	1273

Find:

> The remaining Expected Values, using

©Gertrude Battaly, 2014

 χ^2

13.4 Chi-Squared Independence Test

Educ	Diabetic	Not Diabetic	Total
< 11C	33	218	251
110	18.731	232,269	231
г	25	389	414
110	30.896	383,104	
C.	20	393	413
	30.821	382.179	
	17	178	195
	14.552	180.4 ₄₈	193
TAL	95	1178	1273
	HS HS C	HS /8.73) HS 25 308/6 C 20 30.82/ C 17 C 14.552	HS 33 218

Now that have Expected Values, can proceed to do the χ^2 Hypothesis Test

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

CGertrude Battaly, 2014

Class Notes Homework

Class Notes Homework

Y

13.4 Chi-Squared Independence Test

Chi-Square Test for Independence

Assumptions: 1. All expected frequencies ≥ 1

2. At most 20% of the expected frequencies are less than 5

. SRS Step 2: Decide α

Step 1: H_0 : The 2 variables are not associated. H_a : The 2 variables are associated.

Step 3: Calculate the expected frequencies, E = RC/n

where n = sample size, R = row total, C = column total

Step 4: Compare values for E to assumptions to determine if can use this procedure.

Step 5: Compute the test statistic,

using a table of values: $\gamma^2 = \sum_{i=0}^{\infty} \frac{(O-i)^2}{i}$

 $\chi_{\tau}^2 = \sum \left[\frac{(O-E)^2}{E} \right]$

Step 6: Find CV(s) using df = (r - 1)(c-1)and Table VII.

Step 7: Decide: reject H₀ or not?
Reject if test statistic is in
rejection region (tail).

Step 5: p-value from calculator $p = 1 - X^2 cdf (0, X^2_T, df)$

Step 6: Decide: reject H_0 or not? Reject if $p < \alpha$

Step 8: Verbal interpretation

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Statistics Home Page

© Gertrude Battaly, 2014

Class Notes Homework

Therefore: $\mathbf{E} = \frac{\mathbf{R} \ \mathbf{C}}{\mathbf{n}}$

Statistics Home Page

©Gertrude Battaly, 2014

Class Notes Homework

X²

13.4 Chi-Squared Independence Test

	Educ	Diabetic	Not Diabetic	Total
<	HS	33	218	251
-	HS	25	389	414
<	C	20	393	413
	С	17	178	195
TC	TAL	95	1178	1273

Calculator:

- 1. 2nd Matrix/ Edit / [A]
- 2. Enter # of rows, # columns
- 3. Enter observations
 - the red numbers in the table
- 4. STAT/ TESTS/ X2-Test
- 5. Hit Enter for [A] and for [B]
- 6. Select Calculate

 Answer will include test
 statistic, p-value, and df.
 For expected values:
 2nd Matrix/ Edit / [B]

$$\chi_{\tau}^{2} = \sum \left[\frac{(O - E)^{2}}{E} \right]$$

p= 5,545(10")

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

©Gertrude Battaly, 2014

Class Notes Homewo

13.4 Chi-Squared Independence Test

Com	Male	Female	Total
Mail	58	26	
email	151	86	
Both	72	40	
N/A	76	50	
TOTAL			

On-line x² Computation
Kristopher J. Preacher

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

© Gertrude Battaly, 2014

Class Notes

Homework

13.4 Chi-Squared Independence Test

Com	Male	Female	Total
Mail	58	26	84
	53.6 0.361	30.4 0.637	
email	151	86	237
	5140.001	85.6 0.002	
Both	72	40	112
	71.50.003	40.5 0.006	
NI/A	76	50	126
N/A	Pas 0.22	45.50,445	
TOTAL	357	202	559

 $\chi_{\tau}^{2} = \sum \left[\frac{(O-E)^{2}}{E} \right] \qquad df = (c-1)(r-1)$ $\chi_{\tau}^{2} = 1.6757 \qquad P = 1 - \lambda^{2} cAf(O, 1.707 \xi)$ = 0.635 > do not f = RC f = RC f = RC

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

©Gertrude Battaly, 2014

Class Notes

Homework