GOALS:

- 1. Understand the distribution of the sample mean.
- 2. Understand that using the distribution of the sample mean with sufficiently large sample sizes enables us to use parametric statistics for distributions that are not normal.

Study Ch. 7.3, # 63-71 d, e use calculator

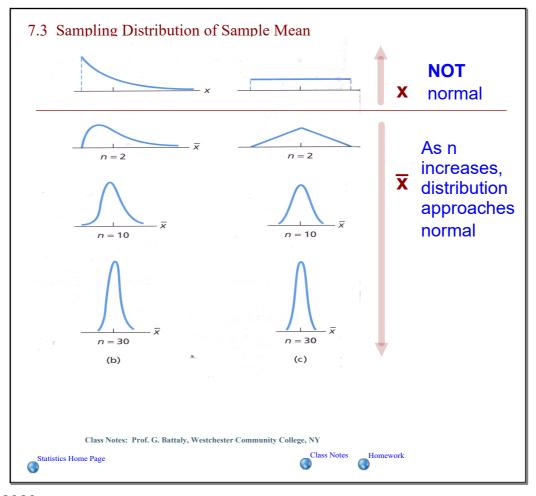
Class Notes: Prof. G. Battaly, Westchester Community College, NY

7.3 Sampling Distribution of Sample Mean

What Do We Know so Far?

$$\mu_{\overline{x}} = \mu \qquad \qquad \sigma_{\overline{x}} = \underline{\sigma}_{\overline{\sqrt{n}}}$$

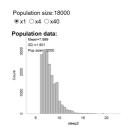
If there are a number of sample means of a particular sample size, n, what is the distribution of \bar{x} ?


Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

© G. Battaly 2020

http://www.rossmanchance.com/applets/OneSample.html


7.3 Sampling Distribution of Sample Mean

SETUP

- 1. Click the url:
- 2. Select POP2. This is skewed right.

POPULATION:

- 1. Examine the histogram.
- 2. The population size, N = 18000. This population consists of values from 6 to 19 (x-axis). It is right skewed. Note the mean (7.999) and standard deviation (1.501)

lass Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

Class Note

7.3 Sampling Distribution of Sample Mean

http://www.rossmanchance.com/applets/OneSample.html

SAMPLING THE POPULATION: n = 5

- 7. Select the box next to Show Sampling Options at the top of the page.
- 8. Start by entering Number of samples: 1 and Sample size: 5
- 9. Be sure that you can see the histogram, and click "Draw Samples"
- 10. Two graphs show the sampling.

The middle graph is a dot plot of the sample items (from the population). The right graph shows the mean of the sample.

- 11. Repeat step 9 by clicking "Draw Samples" again. Watch the graphs.
- 12. Continue the sampling. Watch the histogram of sample means grow.
- 13. Finally change the Number of Samples to 1000 and "Draw Samples" Notice that the histogram is less right skewed than the population, but it is still skewed, and not a normal distribution.
- 14. Compare the mean and standard deviation of the population to the mean and standard deviation of the sample means.

 $\mu =$ $\mu_{xbar} =$ $\sigma =$ $\sigma_{xbar} =$

eg: 8.030,0.670 will be different each time

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Class Notes Homewo

Statistics Home Pa

http://www.rossmanchance.com/applets/OneSample.html

REPEAT SAMPLING for n = 10 and for n = 30

- 1. Click the RESET button.
- 2. Change the sample size to n = 10 and repeat above.
- 3. Change the sample size to n = 30 and repeat above.

For 1000 samples for each

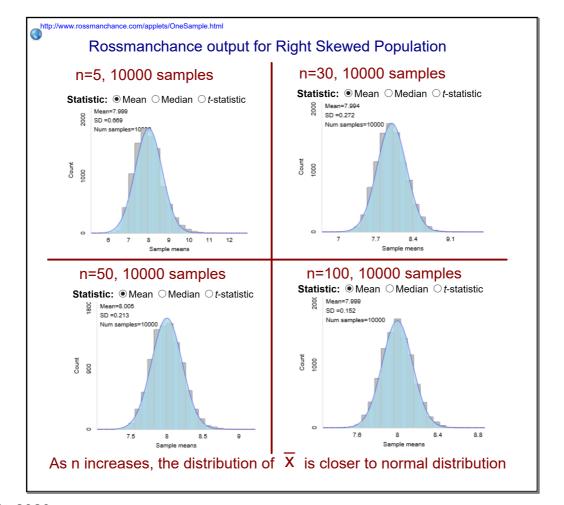
eg: 8.030, 0.670 will be different each time

$$= 0.671$$

eg: 7.992, 0.458 will be different each time

$$\sigma_{\bar{x}} = 1.501$$
 V_{10}
 $= 0.475$

eg: 8.001, 0.284 will be different each time


$$\int_{\overline{x}} = 1.501$$
 $\sqrt{30}$
 -0.274

For 10000 samples for n=30, get 0.275

Class Notes: Prof. G. Battaly, Westchester Community College, NY

 \overline{X}

7.3 Sampling Distribution of Sample Mean

G: $\mu = 35$, $\sigma = 42$, **n.d**

- a) F: sampling distribution of \overline{x} , n = 9
- b) Can you answer part (a) if the distribution of original variable is unknown?
- c) Can you answer part (a) if the distribution of original variable is unknown and n=36? Why or why not?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

Class Notes

Homewor

n.d. = normally distributed

n.d. = normally distributed

7.3 Sampling Distribution of Sample Mean

G: $\mu = 35$, $\sigma = 42$

a) G: n.d. F: sampling distribution of \overline{X} , n = 9

n.d. $u_{\bar{x}} = u = 35$ $v_{\bar{x}} = \frac{\sigma}{\sqrt{h}} = \frac{42}{\sqrt{9}} = 14$

b) Can you answer part (a) if the distribution of the original variable is unknown?

 $\frac{Na}{S}$ even though $\sqrt{x} = 35$, $\sqrt{x} = 14$ But distr. \sqrt{x} not known, n = 9 < 30

c) Can you answer part (a) if the distribution of the original variable is unknown and n=36? Why or why not? ∴ Do NOT know the shape of the distribution of \overline{x} Can NOT use for predictions.

 \overline{X}

My or why not?

N=36: Yes, distrib & is ~ hid even if xn

 $u_{\bar{x}} = u = 35 | \bar{x} = \bar{y} = \frac{42}{\sqrt{36}} = 7$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

Class Notes

G: μ , σ , n large [\geq 30]

- a) Identify the distribution of $\overline{\chi}$
- b) Does your answer to part (a) depend on *n* being large?
- c) If n < 30, can you still identify the $\mu_{\overline{\chi}}$, $\sigma_{\overline{\chi}}$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

Class Note:

Homewor

7.3 Sampling Distribution of Sample Mean

G: μ , σ , n large [\geq 30]

a) Identifyy the distribution of $\overline{\chi}$

 $\sim n.d.$ $\mu_{\bar{\chi}} = \mu_{\bar{\chi}} = \frac{\Gamma}{\sqrt{h}}$

b) Does your answer to part (a) depend on *n* being large?

Yes. We are not given the distribution of the population variable, x. Only when $n \ge 30$ can we say that \overline{x} is \sim n.d.

c) If n < 30, you can still compute the $\mu_{\overline{\chi}}$, $\sigma_{\overline{\chi}}$ but it is meaningless because can NOT identify the distribution (shape).

Without a known distribution, cannot use area under curve to interpret as either % or probability

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Pag

Homeworl

6

© G. Battaly 2020

G: NYC marathon, n.d., $\mu = 61 \text{ min}$, $\sigma = 9 \text{ min}$

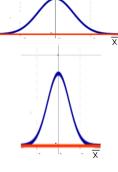
- a) F: sampling distribution of \overline{X} , n = 4
- b) F: sampling distribution of \overline{x} , n = 9
- c) Sketch the distributions in (a) and (b)
- d) F: % of all sample of 4 finishers that finished within 5 min of μ = 61 min. Interpret, re: sampling error.
- e) F: % of all sample of 9 finishers that finished within 5 min of μ = 61 min. Interpret, re: sampling error.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

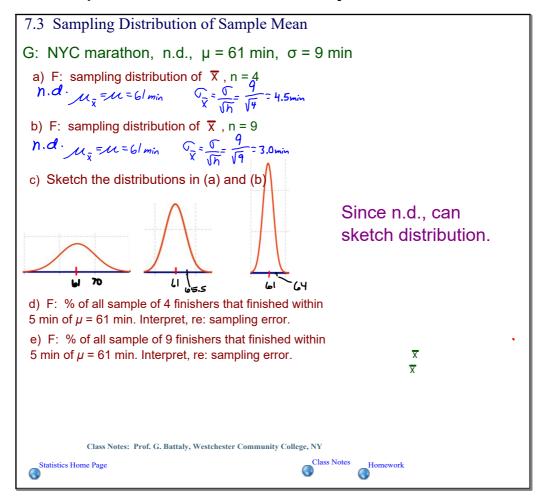
7.3 Sampling Distribution of Sample Mean

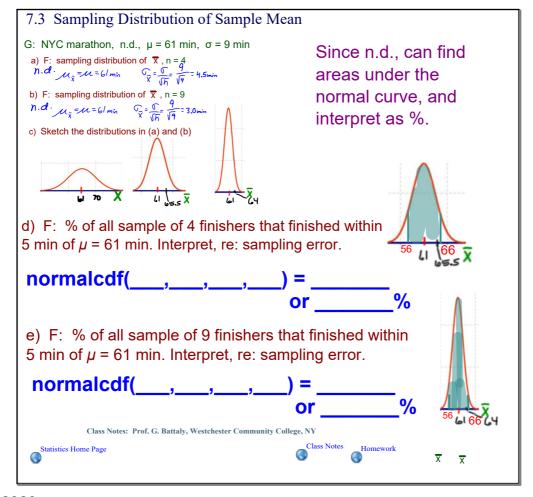
G: NYC marathon, n.d., $\mu = 61$ min, $\sigma = 9$ min

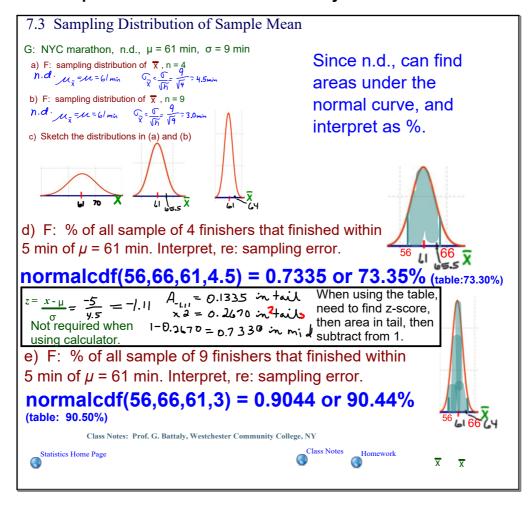

a) F: sampling distribution of \overline{X} , n = 4

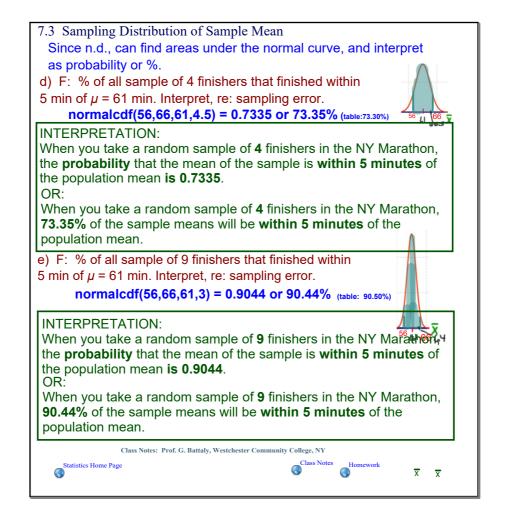
n.d. $u_{\bar{\chi}} = u = 61 min$ $u_{\bar{\chi}} = \frac{0}{\sqrt{h}} = \frac{4}{\sqrt{4}} = 4.5 min$

b) F: sampling distribution of \overline{x} , n = 9


n.d. $u_{\bar{x}} = u = 61 \text{ min}$ $u_{\bar{x}} = \frac{q}{\sqrt{p}} = 3.0 \text{ min}$


- c) Sketch the distributions in (a) and (b)
- d) F: % of all samples of 4 finishers that finished within 5 min of μ = 61 min. Interpret, re: sampling error.
- e) F: % of all samples of 9 finishers that finished within 5 min of μ = 61 min. Interpret, re: sampling error.




Class Notes: Prof. G. Battaly, Westchester Community College, NY

