# **GOALS:**

- I. Understand and measure variation in data sets
  - 1. Range
  - 2. Variance
  - 3. Standard Deviation
- II. Understand differences in computation for sample and population variations

Class Notes: Prof. G. Battaly, Westchester Community College, NY







#### 3.2 Measures of Variation

Given the following:

| DAT | A_I | DAT | <u>A_</u> II | DAT | A_III | DAT | A_IV |
|-----|-----|-----|--------------|-----|-------|-----|------|
| 1   | 8   | 1   | 9            | 5   | 5     | 2   | 4    |
| 5   | 2   | 9   | 1            | 5   | 5     | 4   | 4    |
| 1   | 9   | 1   | 9            | 5   | 5     | 4   | 10   |
| 8   | 5   | 9   | 1            | 5   | 5     | 4   | 4    |
| 2   | 9   | 1   | 9            | 5   | 5     | 4   | 10   |

### Compute:

- a) mean of each set
- b) How are the sets different?
- c) Which has least variation?
- d) range for each
- e) Standard dev, using Defining Formula
- f) Which better distinguishes the spread of the data, Range or Stand dev?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page





© G. Battaly 2018

Given the following:

|   | DAT | ΓA_I | DAT | A_II | DAT | A_III | DAT | A_IV |
|---|-----|------|-----|------|-----|-------|-----|------|
| Г | 1   | 8    | 1   | 9    | 5   | 5     | 2   | 4    |
|   | 5   | 2    | 9   | 1    | 5   | 5     | 4   | 4    |
|   | 1   | 9    | 1   | 9    | 5   | 5     | 4   | 10   |
|   | 8   | 5    | 9   | 1    | 5   | 5     | 4   | 4    |
|   | 2   | 9    | 1   | 9    | 5   | 5     | 4   | 10   |

Compute: a) mean of each set

$$\bar{X} = \bar{\Sigma}X$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

Homework

Measures of Variation

Given the following:

| DAT | Γ <mark>Α_</mark> Ι | DAT | A_II | DAT | A_III | DAT | A_IV |
|-----|---------------------|-----|------|-----|-------|-----|------|
| 1   | 8                   | 1   | 9    | 5   | 5     | 2   | 4    |
| 5   | 2                   | 9   | 1    | 5   | 5     | 4   | 4    |
| 1   | 9                   | 1   | 9    | 5   | 5     | 4   | 10   |
| 8   | 5                   | 9   | 1    | 5   | 5     | 4   | 4    |
| 2   | 9                   | 1   | 9    | 5   | 5     | 4   | 10   |

Compute: a) mean of each set  $\bar{X} = \frac{\sum x}{n}$ 

$$\bar{X} = \underline{\Sigma}X$$

$$\frac{50}{10} = 5.0$$
  $\frac{50}{10} = 5.0$   $5.0$   $5.0$   $5.0$ 

All 4 sets have the same mean = 5.0

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page



Given the following:

| DAT | ΓA_I | DAT | A_II | DAT | A_III | DAT | A_IV |
|-----|------|-----|------|-----|-------|-----|------|
| 1   | 8    | 1   | 9    | 5   | 5     | 2   | 4    |
| 5   | 2    | 9   | 1    | 5   | 5     | 4   | 4    |
| 1   | 9    | 1   | 9    | 5   | 5     | 4   | 10   |
| 8   | 5    | 9   | 1    | 5   | 5     | 4   | 4    |
| 2   | 9    | 1   | 9    | 5   | 5     | 4   | 10   |

Compute: a) mean of each set  $\overline{X} = \underline{\Sigma X}$ 

$$\frac{50}{10} = 5.0$$
  $\frac{50}{10} = 5.0$   $5.0$   $5.0$   $5.0$ 

All 4 sets have the same mean = 5.0

b) How are the sets different?

Class Notes: Prof. G. Battaly, Westchester Community College, NY







### Measures of Variation

Given the following:

| DA | ΓA_I | DAT | A_II | DAT | A_III | DAT | A_IV |
|----|------|-----|------|-----|-------|-----|------|
| 1  | 8    | 1   | 9    | 5   | 5     | 2   | 4    |
| 5  | 2    | 9   | 1    | 5   | 5     | 4   | 4    |
| 1  | 9    | 1   | 9    | 5   | 5     | 4   | 10   |
| 8  | 5    | 9   | 1    | 5   | 5     | 4   | 4    |
| 2  | 9    | 1   | 9    | 5   | 5     | 4   | 10   |

Compute: a) mean of each set  $\overline{X} = \underline{\sum x}$ 

$$\frac{50}{10} = 5.0$$
  $\frac{50}{10} = 5.0$   $5.0$   $5.0$   $5.0$ 

All 4 sets have the same mean = 5.0

# b) How are the sets different?

I has repeats of 5 numbers: 1,2,5,8,9

II has repeats of 2 numbers: 1,9

**Variation** 

III has repeats of 1 number: 5

IV has repeats of 3 numbers: 2,4,10

































Want a measure that describes the distance away from the mean of each data item.

| Data I | X = 5.0                                       |
|--------|-----------------------------------------------|
| Xi     | $x_i - \overline{x}$ $(x_i - \overline{x})^2$ |
| 1      |                                               |
| 5      |                                               |
| 1      |                                               |
| 8      |                                               |
| 2      |                                               |
| 8      |                                               |
| 2      |                                               |
| 9      |                                               |
| 5      |                                               |
| 9      |                                               |

Looking for mathematical measure: Average distance away from the mean.

>Data set with small distances from the mean has little variation. >Data set with larger distances from the mean has large variation.

# Start with $x - \overline{X}$

Since  $\overline{\mathbf{X}}$  is designed to be the fulcrum of distribution, if we add distance from  $\overline{\mathbf{X}}$  we get 0.

Therefore, square the differences

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

Class Notes

Homework





Want a measure that describes the distance away from the mean of each data item.

But, also want an **average distance away from the mean** - more meaningful

Defining Formula for the Sample Standard Deviation

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

Class Note



| 3.2 N | <b>Aeasures</b> | of V | 'ariation |
|-------|-----------------|------|-----------|
|-------|-----------------|------|-----------|

#50. Given the following:

| DAT | ΓA_I | DAT | A_II | DAT | A_III | DAT | A_IV |
|-----|------|-----|------|-----|-------|-----|------|
| 1   | 8    | 1   | 9    | 5   | 5     | 2   | 4    |
| 5   | 2    | 9   | 1    | 5   | 5     | 4   | 4    |
| 1   | 9    | 1   | 9    | 5   | 5     | 4   | 10   |
| 8   | 5    | 9   | 1    | 5   | 5     | 4   | 4    |
| 2   | 9    | 1   | 9    | 5   | 5     | 4   | 10   |

- e) Standard dev, using Defining Formula
- f) Which better distinguishes the spread of the data, Range or Stand dev?

| Data II | X = S | .0              |
|---------|-------|-----------------|
| Xi      | x - X | $(x-\bar{x})^2$ |
| 1       |       |                 |
| 9       |       |                 |
| 1       |       |                 |
| 9       |       |                 |
| 1       |       |                 |
| 9       |       |                 |
| 1       |       |                 |
| 9       |       |                 |
| 1       |       |                 |
| 9       |       |                 |

$$s = \sqrt{\frac{\Sigma(x_i - \overline{x})^2}{n - 1}}$$









© G. Battaly 2018





© G. Battaly 2018



Computing Formula for the Standard Deviation

$$s = \sqrt{\frac{\sum x_i^2 - (\underline{\sum} x_i)^2 / n}{n - 1}}$$

| Data I |                |  |
|--------|----------------|--|
| Xi     | X <sub>À</sub> |  |
| 1      |                |  |
| 9      |                |  |
| 9      |                |  |
| 9      |                |  |
| 1      |                |  |
| 9      |                |  |
| 1      |                |  |
| 9      |                |  |
| 1      |                |  |
| 9      |                |  |

Class Notes: Prof. G. Battaly, Westchester Community College, NY





#### Measures of Variation

Computing Formula for the Standard Deviation

$$s = \sqrt{\frac{\sum x_i^2 - (\sum x_i)^2 / n}{n - 1}}$$

| Data I |     |  |
|--------|-----|--|
| Xi     | XX  |  |
| 1      | 1   |  |
| 9      | 81  |  |
|        | 1   |  |
| 9      | 81  |  |
| 1      | 1   |  |
| 9      | 81  |  |
| 1      | 1   |  |
| 9      | 81  |  |
| 1      | 1   |  |
| 9      | 81  |  |
| 50     | 410 |  |

$$s = \sqrt{\frac{410 - (50)^2 / 10}{9}}$$

$$s = 4.2$$

# Know formulas:

mean, 
$$\overline{X} = \underline{\Sigma}X$$

Defining Formula Std Dev, s = 1

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$$

Computing Formula Std Dev  $s = \sqrt{\frac{\sum x_i^2 - (\sum x_i^2$ 

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page















 $studentHeight\_rev.xlsx$