Study 7.5 # 1-15, 23, 27, 39, 41, 45, 49-53

Skip to Quadratic Formula

Continue for explanation of solutions to quadratic equations

Class Notes: Prof. G. Battaly, Westchester Community College, NY

To solve a quadratic equation in factored form:

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

Homework

3

7.5 Quadratic Formula

To solve a quadratic equation in factored form:

So far have used MPZ

u v = 0

u = 0

v = 0

can solve

Now, will consider:

uu = 9

 $u^2 = 9$

 $u = \pm 3$

can solve

 ${\bf Class\ Notes:\ Prof.\ G.\ Battaly, We stchester\ Community\ College, NY}$

College Algebra Home Page

Homework

Solve:
$$x^2 - 16 = 0$$

$$(x + 4)(x - 4) = 0$$

 $x + 4 = 0$
 $x = -4$
 $x - 4 = 0$
 $x = 4$

$$x^{2} = 16$$

$$x = \pm \sqrt{16}$$

$$x = \pm 4$$

 \therefore x = -4 and x = 4 are both solutions.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

Homework

Solve:
$$x^2 - 19 = 0$$

$$x^2 = 19$$
$$x = \pm \sqrt{19}$$

∴
$$x = -\sqrt{19}$$
 and $x = \sqrt{19}$ are both solutions.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

Homework

$$x^{2} - 9 = 8$$

 $x^{2} - 17 = 0$ $\longrightarrow x^{2} = 17$
 $(x + \sqrt{17})(x - \sqrt{17}) = 0$ $x = \pm \sqrt{17}$
 $x + \sqrt{17} = 0$ $x = \sqrt{17} = 0$
 $x = -\sqrt{17}$ $x = \sqrt{17} = 0$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

Homework

©2013, G. Battaly 6

$$x^2 + 11x + \underline{\hspace{1cm}} = 20 + \underline{\hspace{1cm}}$$

Solve:
 $x^2 + 11x - 20 = 0$

prime trinomial, cannot factor BUT, can use APE to put into form:

$$u^2 = n$$

$$u = \pm \sqrt{n}$$

Find:
$$\frac{b}{2a} = \frac{11}{2(1)} = \frac{11}{2}$$

Then square:
$$\begin{bmatrix} 11 \\ 2 \end{bmatrix}^2$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

Homework

Solve:

$$x^2 + 11x = 20$$

$$u^2 = n$$

 $u = \pm \sqrt{n}$

$$x^2 + 11x + \left[\frac{11}{2}\right]^2 = 20 + \left[\frac{11}{2}\right]^2$$

$$\left(x + \frac{11}{2}\right)^2 = 20 + \left[\frac{11}{2}\right]^2$$

$$x + \frac{11}{2} = \pm \sqrt{20 + \left[\frac{11}{2}\right]^2}$$

$$X = -\frac{11}{2} \pm \sqrt{20 + \left[\frac{11}{2}\right]^2}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

Solve: $ax^2 + bx + c = 0$

Quadratic Formula $x = -b \pm \sqrt{b^2-4ac}$ 2a

$$x^{2} + 11x - 20 = 0$$

 $a = 1, b = 11, c = -20$
 $x = -11 \pm \sqrt{11^{2}-4(1)(-20)}$

ALWAYS:

- 1. Write formula.
- 2. Write values for a, b, and c.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

