- 3.2 Solving Systems of Linear Equations
- 3.3 Using Systems to Model Data

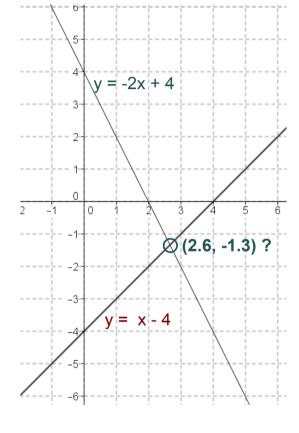
Study 3.2 # 1, 5, 9, 17, 21, 23, 25, 29, 35, 39, 41, 45

check answers with on-line geogebra:
Systems of 2 Linear Eq.

Study 3.3 # 11, 13, 15

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page


Homework Problems

Graphing provides overview of a system

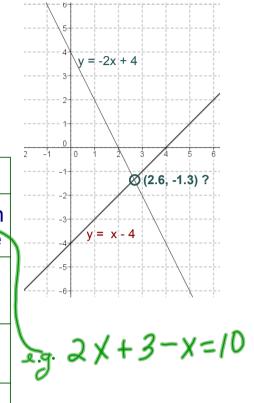
of equations:

Increasing or decreasing Shallow or steep changes Intersect or not

To obtain precision in solving the system, need ananalytical approach

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Homework Problems
College Algebra Home Page

© G. Battaly, 2013 2

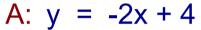

Analytic Solution Overview

Goal:

Find values of the variables that satisfy both equations

(2 equations in 2 variables)

How?	Get
 Eliminate 1 of the 2 variables 	equation in 1 variable
Solve for the remaining variable	1st value in answer
3. Substitute the value	equation in 1 variable
4. Solve for the other variable	2nd value in answer
5. State solution	(a,b)



Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

Homework Problems

How?	Get
Eliminate 1 of the variables	equation in 1 variable
Solve for the remaining variable	1st value in answer
3. Substitute the value	equation in 1 variable
Solve for the other variable	2nd value in answer
5. State solution	(a,b)

B:
$$y = x - 4$$

$$-2x + 4 = x - 4$$

$$- x - 4 = -x - 4$$

$$-3x + 0 = 0 - 8$$

$$-3x = -8$$

$$x = -8 = 8/3 = 2.67$$

B:
$$y = 8 - 4 = 8 - 12$$

 $y = -4$
 3

(8/3, -4/3)

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework Problems

College Algebra Home Page

A:
$$3(x-1)-y=3$$

B: $7x-3y-10=0$

How do we "eliminate 1 of the 2 variables"?

Have 2 options: SUBSTITUTION or ELIMINATION

	How?	Get
1.	Eliminate 1 of the 2 variables	equation in 1 variable
2.	Solve for the remaining variable	1st value in answer
3.	Substitute the value	equation in 1 variable
4.	Solve for the other variable	2nd value in answer
5.	State solution	(a,b)

SUBSTITUTION

- a) Select either of the 2 equations.
- b) Solve for one variable in terms of the other.
- c) Substitute in the other equation.

ELIMINATION - add opposites to eliminate a variable

- a) Arrange each equation in the form: ax + by = c
- b) Use multiplication (MPE) to get opposite coefficients for one of the variables.
- c) Use addition (APE) to eliminate that variable.

MPE: Multiplication Property of Equality APE: Addition Property of Equality

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

Homework Problems

How do we

"eliminate 1 of the 2 variables"?

SUBSTITUTION

- a) Select either of the 2 equations.
- b) Solve for one variable in terms of the other.
- c) Substitute in the other equation.

A:
$$3(x-1)-y=3$$

B: $7x-3y-10=0$

A:
$$3x - 3 - y = 3$$
 DP

A:
$$3x - 6 = y$$
 APE

B:
$$7x - 3y = 10$$
 APE

$$7x - 3(3x - 6) = 10$$
 substitute for y

$$7x - 9x + 18 = 10$$
 simplify, DP
 $-2x = -8$ APE
 $x = 4$ MPE

(4, 6) Answer

How?			Get
Eliminate 1 of the variables			equation in 1 variable
2.		for the ining variable	1st value in answer
3. Substitute the value		titute the value	equation in 1 variable
4.		for the variable	2nd value in answer
5.	State	solution	(a,b)

:
$$7x - 3y = 10$$

 $7(4) - 3y = 10$ substitute for x
 $28 - 3y = 10$ simplify
 $-3y = -18$ APE
 $y = -18/(-3) = 6$ MPE

check answers with on-line geogebra: Systems of 2 Linear Eq.

MPE: Multiplication Property of Equality APE: Addition Property of Equality

Class Notes: Prof. G. Battaly, Westchester Community College, NY

__Homework Problems

College Algebra Home Page

How do we "eliminate 1 of the 2 variables"?

ELIMINATION - add opposites to eliminate a variable

- a) Arrange each equation in the form: ax + by = c
- b) Use multiplication (MPE) to get opposite coefficients for one of the variables.
- c) Use addition (APE) to eliminate that variable.

A:
$$3(x-1)-y=3$$

B: $7x-3y-10=0$

Simplify A

A:
$$3x - 3 - y = 3$$
 DP

A:
$$3x - y = 6$$
 APE

A:
$$3x - y = 6$$

B:
$$7x - 3y = 10$$

To eliminate y,

Multiply A by -3 and add to B:

$$-3A: \{-9x + 3y = -18\}$$

B: $\{7x - 3y = 10\}$

$$-2x + 0 = -8$$

$$-2x = -8$$

$$x = 4$$

B:
$$7x - 3y = 10$$

 $7(4) - 3y = 10$ substitute for x
 $28 - 3y = 10$ simplify
 $-3y = -18$ APE
 $y = -18/(-3) = 6$ MPE

(4, 6) Answer

MPE: Multiplication Property of Equality APE: Addition Property of Equality

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

Homework Problems

^		4	3	(Ц_
Δ · λ	y = 2x	_ 1)		-
\bigcap .	/	- 1			

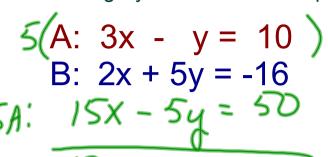
B:
$$x + y = 5$$
 $2 + 3.5$

$$X+(2x-1)=5$$

	How?	Get
, v	Eliminate 1 of the 2 variables	equation in 1 variable
L	Solve for the remaining variable	1st value in answer
~	3. Substitute the value	equation in 1 variable
L	4 Solve for the other variable	2nd value in answer
	5. State solution	(a,b)

$$3x-1=5$$

$$(2,3)$$


A:
$$y = 3(2) - 1 = 4 - 1 = 3$$

check answers with on-line geogebra: Systems of 2 Linear Eq.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

Homework Problems

How?	Get
Eliminate 1 of the variables	equation in 1 variable
Solve for the remaining variable	1st value in answer
3. Substitute the value	equation in 1 variable
Solve for the other variable	2nd value in answer
5. State solution	(a,b)

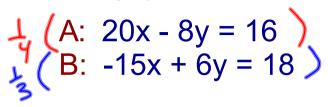
check answers with on-line geogebra: Systems of 2 Linear Eq.

Homework Problems

College Algebra Home Page

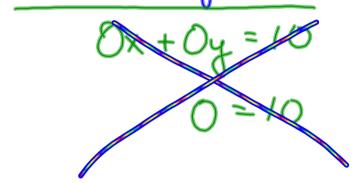
A: 2x + 3y = -2

B: x + 3y = 2


Subtract B from A, or multiply B by (-1) and add

A: 2x + 3y = -2

B: -x - 3y = -2


How?	Get
Eliminate 1 of the variables	equation in 1 variable
Solve for the remaining variable	1st value in answer
3. Substitute the value	equation in 1 variable
Solve for the other variable	2nd value in answer
5. State solution	(a,b)

$$X + Oy = -Y$$
 $X = -Y$
 $Y = X$
 Y

A:
$$5x - 2y = 4$$

B: $-5x + 2y = 6$

How?	Get
Eliminate 1 of the variables	equation in 1 variable
Solve for the remaining variable	1st value in answer
3. Substitute the value	equation in 1 variable
Solve for the other variable	2nd value in answer
5. State solution	(a,b)

inconsistent Parellel line

> check answers with on-line geogebra: Systems of 2 Linear Eq.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

Homework Problems

$$\frac{1}{9} : \frac{1}{4}x + \frac{5}{3}y = 2$$

$$\frac{1}{9} : \frac{5}{6}x - \frac{1}{3}y = -2$$

$$\frac{1}{9} : \frac{5}{6}x - \frac{1}{3}y = 660$$

$$\frac{1}{9} : \frac{4}{7}x + \frac{20}{3}y = 8$$

$$\frac{1}{9} : \frac{4}{7}x + \frac{20}{3}y = 660$$

$$\frac{1}{9} : \frac{4}{7}x + \frac{20}{3}y = 600$$

$$\frac{1}{9} : \frac{1}{9} : \frac$$

3.3 Using Systems to Model Data

Apply Solving Systems to word problems.

Given: Visitors to Yellowstone in winter (in thousands)

Vehicle	2001	after 2001
SnowMobile	84.5	decr 15.1/year
SnowCoach	11.7	incr. 12.3/year

Find: When did the number of visitors by snowmobile equal the number of visitors by snowcoach?

Let t = number of years since 2001

Visitors by snowMobile started at 84.5 and decreased 15.1 / year:

$$M = 84.5 - 15.1 t$$

Visitors by snow Coach started at 11.7 and increased 12.3 / year:

$$C = 11.7 + 12.3 t$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Homework Problems

College Algebra Home Page

check answers with on-line geogebra:
Systems of 2 Linear Eq.

3.3 Using Systems to Model Data

Given: Visitors to Yellowstone in winter (in thousands)

Vehicle	2001	after 2001
Snow Mobile	84.5	decr 15.1/year
SnowCoach	11.7	incr. 12.3/year

Find: When did the number of visitors by snowmobile equal the number of visitors by snowcoach?

Let t = number of years since 2001

Visitors by snowMobile started at 84.5 and decreased 15.1 / year:

$$M = 84.5 - 15.1 t$$

Visitors by snowCoach started at 11.7 and increased 12.3 / year:

$$C = 11.7 + 12.3 t$$

Visitors by snowMobile equals the visitors by snowCoach when M = C.

$$84.5 - 15.1t = 11.7 + 12.3t$$

$$t = 2.66 \text{ years}$$
 2001 + 2.66 = 2003.7

Therefore, the visitors by snowmobile equaled the visitors by snowcoach during the year 2003.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

Homework Problems

check answers with on-line geogebra: Systems of 2 Linear Eq.