1.2 Graphing Linear Equations

```
Study 1.2
probl # 1, 5, 9,...25
31, 37-44 all,
81-91
```

Class Notes: Prof. G. Battaly, Westchester Community College, NY

© G. Battaly, 2013

Graphing Linear Equations

1.2 Graphing Linear Equations

Ordered Pair (x,y): 1) point on the curve of an equation

2) solution of the equation

Solution Set: set of all solutions

Consider y = 2x + 1 Let x = 3, Find: y

Therefore, $(\underline{\hspace{0.1cm}},\underline{\hspace{0.1cm}})$ is a solution of y = 2x + 1

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

1.2 Graphing Linear Equations

Ordered Pair (x,y): 1) point on the curve of an equation

2) solution of the equation

Solution Set: set of all solutions

Consider
$$y = 2x + 1$$
 Let $x = 3$, Find: $y = 2(3) + 1$
Therefore, $(3, \frac{3}{2})$ is a solution of $y = 2x + 1$

Check by substituting values found into original equation:

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

1.2 Graphing Linear Equations

Ordered Pair (x,y): 1) point on the curve of an equation

2) solution of the equation

Solution Set: collection of all solutions

Consider y = 2x + 1 Let x = 3, Find: y

Therefore, (3, 7) is a solution of y = 2x + 1

Also (3, 7) is a point on the graph of y = 2x + 1

Is (3, 8) a solution of y = 2x + 1?

 $\frac{1}{\sqrt{2}}$

If (3,8) is a solution of y = 2x+1, then substitution should result in a true statement.

Substitution results in a false statement. Therefore, (3,8) is NOT a solution.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

1.2 Graphing Linear Equations

Consider y = 2x + 1

(3, 7) is a solution

(3, 8) is NOT a solution

Is (0, 1) a solution?

Is (1,0) a solution?

Is (1, 3) a solution?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

1.2 Graphing Linear Equations

Consider
$$y = 2x + 1$$

(3, 7) is a solution

(3, 8) is NOT a solution

```
Is (0, 1) a solution?

y = 2x + 1

1? 2(0) + 1

1? 0 + 1

1 = 1 true YES

Is (1, 3) a solution?
```

Is (1,0) a solution?

$$y = 2x + 1$$

0? 2(1) + 1
0? 2 + 1
1 \neq 3 false NO

y = 2x + 1 3 ? 2(1) + 1 3 ? 2 + 1

3 = 3 true YES

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

1.2 Graphing Linear Equations

How many solutions are there for y = 2x + 1?

Infinitely many solutions:

- > Line continues indefinitely in both directions.
- > Between any two points selected, there are an infinite number of points.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

1.2 Graphing Linear Equations

G:
$$y = 3x + 2$$

Х	3x +2 =	У
-2	-6 + 2	-4
-1	-3 + 2	-1
0	0+2	2
1	3 + 2	5
2	6+2	8

F: graph by hand, by calc

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra Home Page

© G. Battaly, 2013

50.
6:
$$3-5x-2=4x+9-7x$$
 Fisher for x

$$\frac{-5x+1=-3x+9}{-3x-1=+3x-1}$$

$$-2x=8$$

$$X=\frac{8}{-2}$$

$$X=-4$$

$$0h: 3-5(-4)-2? 4(-4)+9-7(-4)$$

$$3+20-2? -16+9+28$$

$$20+1? -16+37$$

$$21=21$$

© G. Battaly, 2013