3.9 Differentials

3.9 # 1, 7-9, 11-19, 20, 27, 31, 37, 41

Definition of Differentials
Do these pages.
3.9 Differentials

When considering $y = \sqrt{x}$ compared with its tangent line, $y = 0.5x + 0.5$, at $x = 1$:

When $x = 2$, the y value of:

- $y = 0.5x + 0.5 \quad \rightarrow \quad 1.5$
- $y = \sqrt{x} \quad \rightarrow \quad 1.414$

Homework
3.9 Differentials

Which is easier to compute?
\[\sqrt{2} \quad \text{or} \quad y = 0.5(2) + 0.5 \]

Can the tangent line be used to approximate \(\sqrt{2} \)?

If the margin of error is acceptable, then the tangent line can be used as an estimate. The error gets larger as \(x \) gets further from the original value.

Class Notes: Prof. G. Battaly, Westchester Community College, NY
3.9 Differentials

Approximations using Tangent Lines

Estimate $\sqrt{6}$

Estimate $\sqrt{5}$

Find: Estimate the square root of 6. of 5.

One method is to use the tangent line

This can be a good estimate when the value of x is close to a value that is easy to compute.
3.9 Differentials

Another method is to use differentials:

Definition:

Let \(y = f(x) \) represent a function that is differentiable on an open interval containing \(x \).

The differential of \(x \), \(dx \), is any nonzero real number.

The differential of \(y \), \(dy \), is:

\[
dy = f'(x) \, dx
\]
3.9 Differentials

Approximations using Differentials

Find $\sqrt{5}$ Use $y = \sqrt{x}$. Let $x = 4$ and $dx = +1$

$$dy = f'(x) \, dx$$
$$dy = \frac{1}{(2\sqrt{x})} \, dx$$
$$dy = \frac{1}{(2\sqrt{4})} \, (1)$$
$$dy = \frac{1}{4}$$

Therefore, $\sqrt{5} \approx \sqrt{4} + dy = 2 + 1/4 = 2.25$

Calculator ~ 2.24
Example 1

F: a) $\% \text{error in } A$

\[A = s^2 \]
\[\frac{dA}{ds} = 2s \]
\[dA = 2sd comedian \]
\[dA = 2(15\text{ cm})(0.05\text{ cm}) = 1.5\text{ cm}^2 \]

\[\% \text{error in } A = \left(\frac{1}{15^2\text{ cm}^2} \right) \left(\frac{0.05\text{ cm}}{15\text{ cm}} \right) \]
\[= \left(\frac{1}{225\text{ cm}^2} \right) \left(\frac{0.05}{15} \right) \]
\[= 0.00718 = 0.718 \%
\]

\[\% \text{error in } A = \frac{dA}{A} \leq 0.025 \]

\[dA = 0.025(15\text{ cm})^2 = 0.025(225) = 5.625\text{ cm}^2 \]
\[dA = 2s ds \]
\[5.625\text{ cm}^2 = 2(15\text{ cm}) ds \]
\[ds = \frac{5.625\text{ cm}^2}{30\text{ cm}} = 0.1875\text{ cm} \]

Clues Notes: Prod. G. Battaly, Westchester Community College, NY

Homework
3.9 Differentials

Finding Differentials of Functions using Definition of the Differential

\[G: \quad y = 3 \ x^{2/3} \quad \text{F: differential } dy \]

\[dy = f'(x) \ dx \]
3.9 Differentials

Finding Differentials of Functions using Definition of the Differential

G: \(y = 3 \, x^{2/3} \)
F: differential \(dy \)

\[
dy = f'(x) \, dx \\
y = 3 \, (2/3) \, x^{-1/3} \, dx \\
y = \frac{2}{x^{1/3}} \, dx
\]
3.9 Differentials

Finding Differentials of Functions using Definition of the Differential

G: \(y = x \cos x \)

F: differential \(dy \)

\[
dy = \frac{dy}{dx} \, dx
\]
3.9 Differentials

Finding Differentials of Functions using Definition of the Differential

G: \(y = x \cos x \)

F: differential \(dy \)

\[
\frac{dy}{dx} = dx
\]

\[
dy = (-x \sin x + \cos x) \, dx
\]
3.9 Differentials

Finding Differentials of Functions using Definition of the Differential

G: \(y = 2 - x^4 \) \nF: differential \(dy \)

\[dy = \frac{dy}{dx} \, dx \]
3.9 Differentials

\[dy = \frac{dy}{dx} \, dx \]

\[dy = 4x^3 \, dx \]
3.9 Differentials

Finding Differentials of Functions using Definition of the Differential

G: \[y = 3x^5 - 2x^2 + 1 \]

F: differential \(dy \)

\[dy = \frac{dy}{dx} \, dx \]
3.9 Differentials

Finding Differentials of Functions using Definition of the Differential

G: \(y = 3x^5 - 2x^2 + 1 \)

F: differential \(dy \)

\[dy = \frac{dy}{dx} \, dx \]

\[dy = (15x^4 - 4x) \, dx \]

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework