Goals:

- 1. Understand how the sign of the 2nd derivative of a function relates to the behavior of the function, re: concave up or concave down.
- 2. Determine intervals where a function is concave up or concave down.
- 3. Find Inflection Points of a curve.
- 4. Use the Second Derivative Test to determine relative extrema.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

Problems for 3.4

2nd Derivative Test for Relative Extrema

Step by step: on-line

Let f be funt.
$$\Rightarrow \int'(c) = 0$$
 (horizontal slope)

and $\int'' \neq rists$ on open interval curt. e .

Let $\int''(c) = 0$ then $\int''(c) = 0$ (horizontal slope)

and $\int''' \neq rists$ on open interval curt. e .

Let $\int'''(c) = 0$ then $\int''(c) = 0$ the first fails.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Problems for 3.4

3.4 Concavity & the 2nd Derivate Test

$$G: Y = \chi^3 - \chi \qquad F: \text{ Rel. extr. } J^{\text{adderiv.}} + \text{est}$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^2 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^2 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^2 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^2 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^2 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^2 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^2 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^2 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^2 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3 \chi^3 - 1$$

$$J = \chi^3 - \chi \qquad dy = 3$$

```
Example: G: h(x) = x - 5x + 2
F: open interval where c.u. and c.d.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page
```


Definition of Point of Inflection

Let f be a function that is continuous on an open interval and let c be a point in the interval. If the graph of fhas a tangent lineat this point (c, f(c)), then this point is a**point** of inflection of the graph of f if the concavity of f changes from upward to downward (or downward to upward) at the point.

Inflection Point at c

- 1. f continuous
- 2. f has a tangent line
- 3. concavity changes (f " changes sign)

If (c,f(c)) is a point of inflection of the graph of f, then either f''(c) = 0 or f''(c) does not exist at x = c.

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Calculus Home Page
Problems for 3.4

Theorum: Points of Inflection

If (c,f(c)) is a point of inflection of the graph off, then either:

$$f''(c) = 0$$
 or f'' does not exist at $x = c$

Consider:
$$y = x^{1/3}$$
 and $y = x^{2/3}$ has IP no IP

Change f(x) to x^(1/3)

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

_Problems for 3.

3.4 Concavity & the 2nd Derivate Test

Theorum: Points of Inflection

If (c,f(c)) is a point of inflection of the graph of, then either:

$$f''(c) = 0$$
 or f'' does not exist at $x = c$

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

Consider:

$$y = x^{1/3}$$

(0,0)
$$\begin{cases} x < 0, & \frac{d^2y}{dy} > 0 \text{ c.d.} \\ x > 0, & \frac{d^2y}{dy} = < 0 \text{ c.d.} \end{cases}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Calculus Home Page

Problems for 3.4

