Series and Tests, a Summary Prof G Battaly, May 2017

Series/Test	Form	Converges	Diverges	Sum/Notes
Alternating	$\sum_{n=1}^{\infty} (-1)^n a_n \text{ or } \sum_{n=1}^{\infty} (-1)^{n+1} a_n$ $a_n > 0$	Converges if: 1. $\lim_{n \to \infty} a_n = 0$ 2. $a_{n+1} \le a_n$ for all n		s _N as approx. with Remainder: R _N ≤ a _{N+1}
Direct Comparison	Compare Σa_n to known Σb_n where a_n , $b_n > 0$ $\sum_{n=1}^{\infty} a_n$ $\sum_{n=1}^{\infty} b_n$	If $0 < a_n \le b_n \&$ if Σb_n converges, then Σa_n converges	If $0 < b_n \le a_n \&$ if Σb_n diverges, then Σa_n diverges	
Geometric	$\sum_{n=1}^{\infty} ar^{n-1} \operatorname{or} \sum_{n=0}^{\infty} ar^{n}$	r <1	r <u>></u> 1	$S=\frac{a}{1-r}$
Integral Test	$\sum_{n=1}^{\infty} a_n \qquad a_n = f(n) \ge 0; f(n)$ continuous, positive, decreasing	$\int_{1}^{\infty} f(x) dx$ converges	$\int_{1}^{\infty} f(x) dx$ diverges	s _N as approx. with Remainder: $0 < R_N \leq \int_N^\infty f(x) dx$
Limit Comparison	Compare Σa_n to known Σb_n where a_n , $b_n > 0$ and $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = L > 0$	lf Σb _n converges, Σa_n converges	lf Σb _n diverges, Σa_n diverges	
nth Term Divergence	$\sum_{n=1}^{\infty} a_n$		$\lim_{n\to\infty}a_n\neq 0$	
p - Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	p > 1	0 < 1	
Ratio	$\sum_{n=1}^{\infty} a_n \qquad \mathbf{a_n} \neq 0$	$ \lim_{n \to \infty} \left \frac{\mathbf{a}_{n+1}}{\mathbf{a}_n} \right < 1 $ converges absolutely	$\frac{\lim_{n \to \infty} \left \frac{\mathbf{a}_{n+1}}{\mathbf{a}_n} \right > 1}{\text{Diverges}}$	Note: If limit =1, test is inconclusive; Does not work for p-series
Root	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \sqrt[n]{ \mathbf{a}_n } < 1$ converges absolutely	$\lim_{n \to \infty} \sqrt[n]{ \mathbf{a}_n } > 1$ Diverges	Note: If limit =1, test is inconclusive; Does not work for p-series
Telescoping	a _n , includes a difference (partial fract); most terms of s _n add to 0; eg: $\sum_{n=1}^{\infty} (a_n - a_{n+1})$	$\lim_{n\to\infty}a_n=L$		S = a _n - L

© G. Battaly 2017

A Plan for Evaluating Convergence and Divergence of Series

- 1. Does a_n approach 0? Step 2 Yes. Series diverges by nth Term Divergence No. 2. Alternating signs? Alternating Series (if fails - Ratio Test) Yes. Step 3 No. 3. Easy to Integrate? Yes. Integral Test Step 4 No. 4. Geometric Series? or p - Series?
 - Yes. Geometric or p Series test
 - No. Step 5
- 5. Other

Direct or Limit Comparison (compare to other series,

using dominant terms to decide which series)

Ratio or Root Tests (compare terms within the series)

Power Series at c:

$$\sum_{n=0}^{\infty} b_n(x-c)^n = b_0 + b_1(x-c) + b_2(x-c)^2 + \dots$$
centered at c
Taylor Series for f at c:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(c)(x-c)^n = f(c) + f'(c)(x-c) + \frac{f''(c)(x-c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x-c)^n + \dots}{2!} + \frac{f^{(n)}(c)(x-c)^n + \dots}{n!}$$
centered at c
Maclaurin Series for f at c=0:

$$\sum_{n=0} \frac{f(n)(0)}{n!} x^{n} = f(0) + f'(0)x + \frac{f''(0)}{2!}x^{2} + \dots + \frac{f(n)(0)}{n!}x^{n} + \dots$$
centered at 0