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A Plan for Evaluating Convergence and Divergence of Series

1. Does an approach 07?

Yes. Step 2
No. Series diverges by nth Term Divergence
2. Alternating signs?
Yes. Alternating Series (if fails - Ratio Test)
No. Step 3
3. Easy to Integrate?
Yes. Integral Test
No. Step 4
4. Geometric Series? or p - Series?
Yes. Geometric or p - Series test
No. Step 5
5. Other

Direct or Limit Comparison (compare to other series,
using dominant terms to decide which series)
Ratio or Root Tests (compare terms within the series)
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Maclaurin Series for f at ¢=0:
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