

Review Table of Integrals in text (p. 503)

Formulas 1 - 10 are previous, standard.

Can learn others, but all are derivable with techniques learned.

11 can be useful since requires a manipulation not always easy to think of

17, 18 helpful

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Calculus Home Page

Homework

©G. Battaly 2017 1

What approach would you take to integrate?

$$\int \frac{\sin^3 x}{\cos x} dx$$

$$\int_0^1 (3x + 1)^{\sqrt{2}} \, dx$$

$$\int_0^1 \frac{x}{(2x+1)^3} \, dx$$

$$\int t \sin t \cos t dt$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home Page

Homework

7.5 Strategy for Integration: Use as Review

What approach would you take to integrate?

$$\int \frac{\sin^3 x}{\cos x} dx$$

$$\int_0^1 (3x + 1)^{\sqrt{2}} \, dx$$

Trig Identity

U-substitution

$$\int_0^1 \frac{x}{(2x+1)^3} \, dx$$

$$\int t \sin t \cos t dt$$

Partial Fractions

Parts

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Calculus Home Page

Homework

What approach would you take to integrate?

$$\int \frac{2x-3}{x^3+3x} dx$$

$$\int_0^1 e^2 dx$$

$$\int_0^{\sqrt{2}/2} \frac{x^2}{\sqrt{1-x^2}} \ dx$$

$$\int \ln(1+x^2) dx$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home Page

Homework

7.5 Strategy for Integration: Use as Review

What approach would you take to integrate?

$$\int \frac{2x-3}{x^3+3x} dx$$

$$\int_0^1 e^2 dx$$

Partial Fractions

Direct integral

$$\int_{0}^{\sqrt{2}/2} \frac{x^2}{\sqrt{1-x^2}} \ dx$$

$$\int In(1+x^2) dx$$

Trig Substitution

Parts

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Calculus Home Page

Homework

What approach would you take to integrate?

$$\int_{0}^{1} \frac{1+12x}{1+3x} dx$$

$$\int_0^4 \frac{e^{\sqrt{t}}}{\sqrt{t}} dt$$

$$\int_0^1 \frac{3x^2+1}{x^3+x^2+x+1} dx$$

$$\int \frac{\ln x}{x\sqrt{1+(\ln x)^2}} dx$$

Homework

Class Notes: Prof. G. Battaly, Westchester Community College, NY me Page

7.5 Strategy for Integration: Use as Review

What approach would you take to integrate?

$$\int_{0}^{1} \frac{1+12x}{1+3x} dx$$

$$\int_0^4 \frac{e^{\sqrt{t}}}{\sqrt[4]{t}} dt$$

Long Division

U-substitution

$$\int_0^1 \frac{3x^2+1}{x^3+x^2+x+1} dx$$

$$\int \frac{\ln x}{x\sqrt{1+(\ln x)^2}} dx$$

Partial Fractions

U-substitution

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Calculus Home Page

Homework

7.5 Strategy for Integration: Use as Review What approach would you take to integrate? $\int \frac{\sin^3 x}{\cos x} \, dx$ $\int \frac{\sin^2 x \sin x}{\cos x} \, dx = \int \frac{(1-\cos^2 x) \sin x}{\cos x} \, dx$ $\int \frac{\sin x - \cos^2 x \sin x}{\cos x} \, dx = \int \frac{\sin x}{\cos x} \, dx - \frac{\cos^2 x \sin x}{\cos x} \, dx$ $-\ln|\cos x| - \int \cos x \sin x \, dx$ $-\ln|\cos x| + \frac{1}{2} \cos^2 x + c$ or: $\ln|\sec x| - \frac{1}{2} \sin^2 x + c$ Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework

©G. Battaly 2017 5

7.5 Strategy for Integration: Use as Review What approach would you take to integrate?

$$\int_{0}^{1} \frac{3x^{2}+1}{x^{3}+x^{2}+x+1} dx$$

$$\frac{3x^{2}+1}{(x+1)(x^{2}+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^{2}+1}$$

$$\frac{3x^{2}+1}{(x+1)(x^{2}+1)} = \frac{A(x^{2}+1)+(Bx+C)(x+1)}{(x+1)(x^{2}+1)}$$

$$3x^{2}+1 = A(x^{2}+1)+(Bx+C)(x+1)$$

$$(x+1)(x^{2}+1)$$

$$3x^{2}+1 = Ax^{2}+A+Bx^{2}+Bx+Cx+C = (A+B)x^{2}+(B+C)x+(A+C)$$

$$A+B=3+B+C=0
A-B=1$$

$$A-B=1$$

7.5 Strategy for Integration: Use as Review What approach would you take to integrate?

$$\int_{0}^{1} \frac{3x^{2}+1}{x^{3}+x^{2}+x+1} dx \qquad \qquad \frac{-1) \ 1 \ 1 \ 1 \ 1}{1 \ 0 \ 1 \ 0 \ 1} \qquad \frac{6actors to}{(x+1)(x^{2}+1)}$$

$$\int_{0}^{1} \frac{3x^{2}+1}{(x+1)(x^{2}+1)} dx = 2 \int_{0}^{1} \frac{dx}{x+1} + \int_{0}^{1} \frac{x-1}{x^{2}+1} dx$$

$$= 2 \ln|x+1| \int_{0}^{1} + \int_{0}^{1} \frac{x}{x^{2}+1} dx - \int_{0}^{1} \frac{dx}{x^{2}+1}$$

$$= 2 \ln|x+1| + \frac{1}{2} \ln|x^{2}+1| - \arctan x \int_{0}^{1}$$

$$= 2 \ln 2 + \frac{1}{2} \ln 2 - \arctan - [2 \ln 1 + \frac{1}{2} \ln 1 - \arctan 0]$$

$$= (5/2) \ln 2 - \frac{\pi}{4}$$
Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework

©G. Battaly 2017 6