Goals:

- 1. Remember that the area under a curve is the sum of the areas of an infinite $A = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x$
- 2. Understand the approach to finding the area between 2 curves.
- 3. Be able to identify the region bounded by the given conditions.
- 4. Determine the best orientation for the reference rectangle in the region horizontal or vertical.
- 5. Set up the definite integral for finding the area.

Homework: Study 6.1 # 1, 5, 7, 13, 25, 19; 3, 17, 27, 53

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Background:

Area Under a Curve

Definition of Area of a Region in a Plane

Let f be continuous and non-negative on [a,b]. The area of the region bounded by the graph of f, the x-axis, and the vertical lines x = a and x = b is:

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x$$

$$x_{i-1} < c_i < x_i \quad \Delta x = \underline{b-a}$$
as $n \to \infty$, $\Delta x \to 0$

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home Page

Homework on Web

How to find Area of shaded region?

1st need to find point of intersection, because region does not extend beyond that point.

$$\chi^2 = 4 - \chi^2$$

$$2x^2 = 4$$

$$x^2 = 2$$

$$x = \pm \sqrt{2}$$

$$\therefore UL, x = +\sqrt{2}$$

$$LL$$
, $x = 0$

Calculus Home Page

Homework on Web

6.1 Area between Two Curves

How to find Area of shaded region?

area betw 2 curves

C shows both A and B together

D shows A - B

Homework on Web

6.1 Area between Two Curves How to find Area of shaded region? How do we do that analytically? Use reference rectangle. A of rectangle $= [g(c_i) - f(c_i)] \Delta x$ $A = \int_0^{\sqrt{2}} (4 - x^2 - x^2) dx$ $\int_0^{\sqrt{2}} (4 - 2x^2) dx$ $= 4x - 2x^3 \int_0^{\sqrt{2}} (4 - 2x^2) dx$ $= 4\sqrt{2} - 4\sqrt{2} \int_0^{\sqrt{2}} (4 - 2x^2) dx$ $= 4\sqrt{2} - 4\sqrt{2} \int_0^{\sqrt{2}} (4 - 2x^2) dx$ $= 4\sqrt{2} - 4\sqrt{2} \int_0^{\sqrt{2}} (4 - 2x^2) dx$ $= 4\sqrt{2} - 4\sqrt{2} \int_0^{\sqrt{2}} (4 - 2x^2) dx$ $= 4\sqrt{2} - 4\sqrt{2} \int_0^{\sqrt{2}} (4 - 2x^2) dx$ $= 4\sqrt{2} - 4\sqrt{2} \int_0^{\sqrt{2}} (4 - 2x^2) dx$ $= 4\sqrt{2} - 4\sqrt{2} \int_0^{\sqrt{2}} (4 - 2x^2) dx$ $= 4\sqrt{2} - 4\sqrt{2} \int_0^{\sqrt{2}} (4 - 2x^2) dx$ $= 4\sqrt{2} - 4\sqrt{2} \int_0^{\sqrt{2}} (4 - 2x^2) dx$

6.1 Area between Two Curves

Area of region Bounded by 2 Curves

If f and g are continuous on [a, b] and $g(x) \le f(x)$ for all x on [a, b], then the area of the region bounded by f and g and the vertical lines and x = a and x = b is:

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

In general, the area between 2 curves that intersect and switch y positions is given by:

$$A = \int_a^b |f(x) - g(x)| dx$$
 for vertical reference rectangle

or
$$A = \int_{c}^{d} |f(y) - g(y)| dy$$
 for horizontal reference rectangle

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home Page

Homework on Web

Homework on Web

- 6.1 Area between Two Curves
 - G: $f(x) = \sqrt{x}$, h(x) = 1, x=2

F: area of bounded region

To use a **vertical reference** rectangle, need to break up the region into 2 parts.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

6.1 Area between Two Curves

G: $f(x) = \sqrt{x}$, h(x) = 1, x=2x-Axis

F: area of bounded region

Use a **horizontal reference** rectangle instead. Then can do the whole region at once, using dy.

Need x from f(x):
y =
$$\sqrt{x}$$
 so x = y²

$$\int_0^1 (2-y^2) dy = 2y - \underbrace{y^3}_0^1$$
$$= 2 - 1/3 - 0 = 5/3$$

area between 2 curves

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home Page

Homework on Web

Summary of Finding Area betw 2 Curves

- 1. Sketch the curves and the find points of Intersection
- 2. Use the sketch to determine which integral to use:
 - If each curve passes the vertical line test, then
 Use a vertical rectangle, the x variable, and dx:

$$A = \int (upper - lower) dx$$

 If a curve fails the vertical line test but passes the horizontal line test, then use a horizontal rectangle, the y variable, and dy:

$$A = \int (right - left) dy$$

3. If the bounded area contains more than one distinct

region, write the area as the sum of the areas of each distinct region.

- 4. Limits of Integration:
 - o Use the coordinates of the points of intersection.
 - o If x=k₁ or y=k₂ is given this may be one of the limits.

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Calculus Home Page
Homework on Web