Goals: Understand

- 1. The process of finding an antiderivative or indefinite integral requires the reverse process of finding a derivative.
- 2. The result of a Definite Integral is a numerical value. The result of an Indefinite Integral is a function.
- 3. The Net Change Theorum is an interpretation of the Fundamental Theorum of Calculus (FTC).

Homework: Study 5.4 # 1; 5 - 11, 15, 19, ...31; 37, 41, 45, 49, 51, 59, 61

Calculus Home Page Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework on Web

5.4 Indefinite Integrals, Net Change Theorum

Find
$$\frac{dy}{dx}$$
: $y = x^5 + 3$

Find
$$\frac{dy}{dx}$$
: $y = x^5 + 2\pi$

Calculus Home Page Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework on We

5.4 Indefinite Integrals, Net Change Theorum
Suppose you are given:
$f'(x) = 5x^4$
How would you find $f(x)$?
Inverse of finding the derivative: 1. multiply coefficient by exponent 2. substant 1 from the exponent 1. Add 1 to exponent 1. Add 1 to exponent 2. Divide by new exponent 2. Divide by new exponent.
Is there only one $f(x)$?
Calculus Home Page Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework on Web

5.4 Indefinite Integrals, Net Change Theorum
Solve the differential equation:
$$\frac{dy}{dx} = 5x^4$$

$$\int 5x^4 dx$$

$$= \frac{5x^5}{5} + c$$

$$= x^5 + c$$
Calculus Home Page Class Notes: Prof. G. Battaly, Westchester Community College, NY
Homework on Web

Antidifferentiation or **Indefinite Integration**

The operation of finding all the solutions to the differential equation, dy = f(x) dx, is called antidifferentiation or indefinite integration and is denoted by the integral sign \int . The solution when F'(x) = f(x) is:

$$y = \int f(x)dx = F(x) + c$$
integrand variable constant of integration of integration
 $y = \int F'(x)dx = F(x) + c$
looking for the function, F(x), for which the

integrand is the derivative, F'(x) = f(x)

5.4 Indefinite Integrals, Net Change Theorum

Note: Operators \int and dx are no longer present after the operation of integration is performed.

The integral sign \int and dx indicate the operation of integration the same way that a plus sign indicates the operation of addition.

For the division problem, $12 \div 2 = 6$, the result no longer has the operator, \div Instead, it contains only the result, 6.

Likewise, for integration, the result no longer has either the integral sign \int or the dx. Therefore, to continue to write the \int or the dx after the operation of integration has been performed is not correct.

5.4 Indefinite Integrals, Net Change Theorum
$$\int \sqrt[4]{x^5} \, dx$$

$$\int \sqrt[4]{x^5} \, dx$$
Calculus Home Page Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework on Web

Indefinite integrals, Net change Theorem
$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + c$$

$$= \int x^{\frac{n}{4}} dx$$

$$= \int x^{\frac{n}{4}} dx$$

$$= \frac{x^{\frac{n}{4}}}{\frac{n}{4}} + c = \frac{4}{9} x^{\frac{n}{4}} + c$$

$$\int (8x^3 + \frac{1}{2x^2}) dx$$

Calculus Home Page Class Notes: Prof. G. Battaly, Westchester Community College, NY
Homework on Web

5.4 Indefinite Integrals, Net Change Theorum
$$\int (8x^3 + \frac{1}{2x^2}) dx = \int (8x^3 + \frac{1}{2}x^{-2}) dx$$

$$= \frac{8x}{4} + \frac{1}{4} \frac{x}{-1} + C$$

$$= \frac{1}{4x} + C$$

$$=$$

$$\int \sqrt{t} (t^2 + 3t + 2) dt$$

$$\int (t^{\frac{5}{4}} + 3t^{\frac{3}{4}} + 2t^{\frac{1}{4}}) dt$$

$$= \frac{t^{\frac{2}{3}}}{\frac{1}{3}} + \frac{3t^{\frac{5}{3}}}{\frac{1}{3}} + \frac{2t^{\frac{3}{3}}}{\frac{3}{3}} + C$$

$$= \frac{2}{7}t^{\frac{1}{2}} + \frac{6}{5}t^{\frac{5}{5}} + \frac{4}{3}t^{\frac{3}{2}} + C$$

$$\int \frac{\sin x}{1 - \sin^2 x} dx$$

Calculus Home Page Class Notes: Prof. G. Battaily, Westchester Community College, NY
Homework on Wel

$$\int \frac{\sin x}{1 - \sin^2 x} dx = \int \frac{\sin x}{\cos^2 x} dx$$

$$= \int \frac{1}{\cos x} \frac{\sin x}{\cos x} dx$$

$$=\int \sec x \tan x dx$$

$$= \sec x + c$$

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework on Western Community College, NY

5.4 Indefinite Integrals, Net Change Theorum

Fundamental Theorem of Calculus (FTC)

If: 1. a function f is continuous on [a, b] and

2. F is an antiderivative of f on the interval,

then:
$$\int_a^b f(x) dx = F(b) - F(a)$$

$$\int_a^b F'(x)dx = F(b)-F(a)$$

Interpret FTC as **NET CHANGE** in the antiderivative from a to b

$$\int_0^{10} v(t) dt = h(10) - h(0)$$

when v(t) = h'(t), this definite integral results in net change in distance from t=0 to t=10

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Homework on Wel

graphs

- 5.4 Indefinite Integrals, Net Change Theorum
 - G: Honey bee population starts with 100 bees and increases at a rate of n'(t) bees per week.
 - F: What does the following represent?

100 +
$$\int_{0}^{15}$$
 n'(t)dt

graphs

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Homework on W

5.4 Indefinite Integrals, Net Change Theorum

G: a(t) = 2t + 3 (in m/s²), v(0) = -4, $0 \le t \le 3$

F: a) velocity at time t

b) distance traveled from t=0 to t=3 sec

graphs

Calculus Home Page

Homework on We

G:
$$a(t) = 2t + 3$$
 (in m/s²), $v(0) = -4$, $0 \le t \le 3$

F: a) velocity at time t

b) distance traveled from t=0 to t=3 sec

$$v(t) = \int a(t) dt = \int (2t + 3)dt = 2t^{2} + 3t + c$$

$$v(t) = t^2 + 3t + c$$

$$v(0)= 0^2 + 3(0) + c = -4$$
 : c=-4 and

$$v(t) = t^2 + 3t - 4$$
 velocity at time t in m/s

b) distance traveled from t=0 to t=3 sec

h(t)=
$$\int_0^3 V(t)dt = \int_0^3 (t^2 + 3t - 4)dt = \frac{t^3}{3} + \frac{3t^2}{2} - 4t$$

$$= \frac{27}{3} + \frac{27}{2} - 12 - 0$$

$$= (54+81-72)/6 = 63/6 = 10.5 \text{ m}$$
distance traveled from t=0 to t=3 sec

©G. Battaly 2017 10

Think Questions: True or False?

- 1. The antiderivative of f(x) is unique.
- 2. Each antiderivative of an nth-degree polynomial function is an (n+1)th degree polynomial function.
- 3. If p(x) is a polynomial function, then p has exactly one antiderivative whose graph contains the origin.
- 4. If F(x) and G(x) are antiderivatives of f(x), then

$$F(x) = G(x) + c$$

- 5. If f'(x) = g(x), then $\int g(x) dx = f(x) + c$
- 6. $\int f(x)g(x)dx = \int f(x)dx \int g(x)dx$

5.4 Indefinite Integrals, Net Change Theorum

Think Questions: True or False?

- F 1. The antiderivative of f(x) is unique.
- eg 2. Each antiderivative of an *n*th-degree polnomial function is an (n+1)th degree polynoial function.
- \mathcal{T} 3. If p(x) is a polynomial function, then p has exactly one antiderivative whose graph contains the origin.
- \mathcal{T} 5. If f'(x) = g(x), then $\int g(x) dx = f(x) + c$
- F 6. $\int f(x)g(x)dx = \int f(x)dx \int g(x)dx$

5.4 Indefinite Integrals, Net Change Theorum
Find: Indefinite Integral & Check by Differentiation

\[
\frac{\text{X} + \int \text{A}}{\text{X}}
\]

\[
\text{Calculus Home Page} \quad \text{Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework on Web } \]

5.4 Indefinite Integrals, Net Change Theorum

Find: Indefinite Integral & Check by Differentiation

$$\int \frac{X+L}{X} dX = \int \frac{X+L}{X^k} dX = \int \left(\frac{X}{X^k} + \frac{L}{X^k}\right) dX$$

$$= \int \left(\frac{X}{X} + 6X^k\right) dX$$

$$= \int \left(\frac{X}{X$$

