
Goal:

- 1. Understand how variables change with respect to time.
- 2. Understand "with respect to".

Study 4.1, #1-7, 11, 17, 19, 23, 25, 29, 35

Refer to problems # 24 - 27

For the following exercises, consider a right cone that is leaking water. The dimensions of the conical tank are a height of 16 ft and a radius of 5 ft.

What is common to all these problems?

- 25. How fast does the depth of the water change when the water is 10 ft high if the cone leaks water at a rate of 10 ft³/min?
- 26. Find the rate at which the surface area of the water changes when the water is 10 ft high if the cone leaks water at a rate of 10 ft³/min.
- 27. If the water level is decreasing at a rate of 3 in./min when the depth of the water is 8 ft, determine the rate at which water is leaking out of the cone.

Refer to problems # 24 - 27

What is common to all these problems?

geogebra: Related Rates

rate of change of distance with respect to time

 $\frac{dx}{dt}$ $\frac{dy}{dt}$

rate of change of volume with respect to time

 $\frac{dV}{dt}$

rate of change of area with respect to time $\frac{dA}{dt}$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

4.1 Related Rates

PREVIOUS DISTANCE, VELOCITY, ACCELERATION were functions of time s(t), v(t), a(t)

Definition

Ch. 3.4 Rates of Change

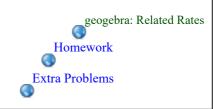
Let s(t) be a function giving the position of an object at time t.

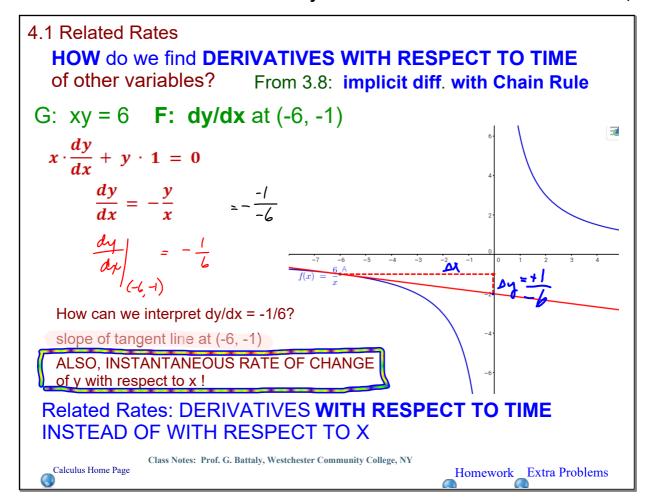
The velocity of the object at time t is given by v(t) = s'(t).

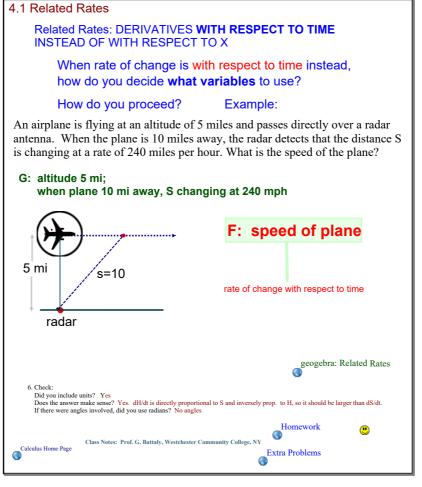
The speed of the object at time t is given by |v(t)|.

The acceleration of the object at t is given by a(t) = v'(t) = s''(t).

RELATED RATESARE DIFFERENT FROM PREVIOUS


-NOT functions of time


-ARE DERIVATIVES WITH RESPECT TO TIME


of other variables

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Related Rates

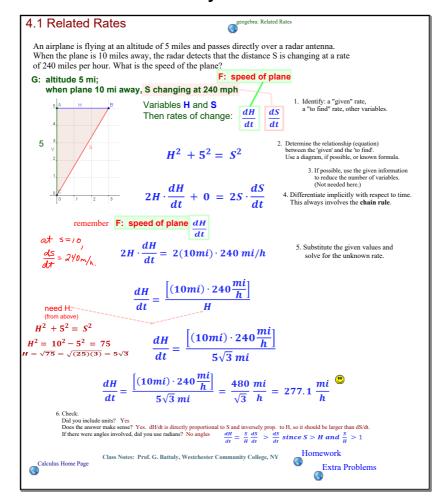
step-by-step

- 1. Identify: a "given" rate, a "to find" rate, other conditions.
- 2. Determine the relationship (equation) between the "given" and the "to find". Use a diagram, if possible, or known formula.
- 3. If possible, use the given information to reduce the number of variables.
- 4. Differentiate implicitly with respect to time. This **always involves the chain rule**. For example,

$$\frac{dV}{dt} = \frac{dV}{dr} \frac{dr}{dt}$$

or <u>d</u>

 $\frac{dy}{dt} = \frac{dy}{dx} \quad \frac{dx}{dt}$


- 5. Substitute the given values and solve for the unknown rate.
- 6. Check: * Did you include units?
 - * does the answer make sense?
 - * If there were angles involved, did you use radians?

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework Extra Problems

4.1 Related Rates	geogebra: Related Rates	
An airplane is flying at an altitude of 5 miles and passes d	lirectly over a radar antenna.	
When the plane is 10 miles away, the radar detects that the distance S is changing at a rate		
of 240 miles per hour. What is the speed of the plane?	 Identify: a "given" rate, a "to find" rate, other variable 	
G:	Determine the relationship (equation between the 'given' and the 'to find	
F:	Use a diagram, if possible, or know	
	If possible, use the given informato reduce the number of variables (Not needed here.)	
	4. Differentiate implicitly with resp This always involves the chain i	
	5. Substitute the given values and solve for the unknown rate.	
6. Check:		
Did you include units? Yes Does the answer make sense? Yes. dH/dt is directly proportional to S and inversel If there were angles involved, did you use radians? No angles		
Class Notes: Prof. G. Battaly, Westchester Community College, N	Homework	
Calculus Home Page	Extra Problems	

2. Find
$$\frac{dx}{dt}$$
 at $x = -2$ and $y = 2x^2 + 1$ if $\frac{dy}{dt} = -1$.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework
Extra Problems

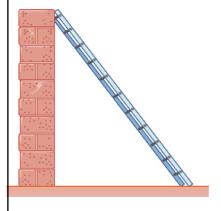
Calculus Home Page

2. Find $\frac{dx}{dt}$ at x = -2 and $y = 2x^2 + 1$ if $\frac{dy}{dt} = -1$.

$$\frac{dy}{dt} = 4 \times \frac{dx}{dt}$$

$$-1 = 4(-2)\frac{dx}{dt}$$

$$\frac{df}{dx} = \frac{-1}{-8} = 8$$


Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

4.1 Related Rates

6. A 25-ft ladder is leaning against a wall. If we push the ladder toward the wall at a rate of 1 ft/sec, and the bottom of the ladder is initially 20 ft away from the wall, how fast does the ladder move up the wall 5 sec after we start pushing?

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, N

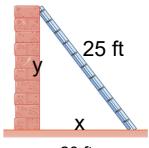
6. A 25-ft ladder is leaning against a wall. If we push the ladder toward the wall at a rate of 1 ft/sec, and the bottom of the ladder is initially $20\,\mathrm{ft}$ away from the wall, how fast does the ladder move up the wall $5\,\mathrm{sec}$ after we start

pushing?

G: 25 ft ladder, dx/dt=-1ft/s, x=20ft when t=0sec

F: dy/dt when t=5 sec

$$z^{2} = x^{2} + y^{2} = 25^{2}$$


$$2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0$$

$$dt \qquad dt$$

$$x \frac{dx}{dt} + y \frac{dy}{dt} = 0$$

$$dt \qquad dt$$

$$15(-1) + 20 \frac{dy}{dt} = 0$$

20 ft

dx/dt=-1ft/s, for t=5s, x=20- 5 = 15 ft then 25^2 =15² + y² and y²=400 and y=20

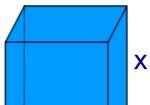
$$dy = 15/20 = 3/4 \text{ ft/sec}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Extra Problems

4.1 Related Rates

16. The side of a cube increases at a rate of $\frac{1}{2}$ m/sec. Find the rate at which the volume of the cube increases when the side of the cube is 4 m.


Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

16. The side of a cube increases at a rate of $\frac{1}{2}$ m/sec. Find

the rate at which the volume of the cube increases when the side of the cube is 4 m. G: cube, side incr 1/2 m/s

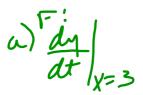
$$V = X^3$$

G: dx/dt = 1/2 m/sF: dV/dt when x = 4m

$$\frac{dV}{dt} = 3x^2 \frac{dx}{dt}$$

$$\frac{dV}{dt} = 3(4^2)(1/2) = 24 \text{ m}^3/\text{sec}$$

F: rate of V change, side = 4m

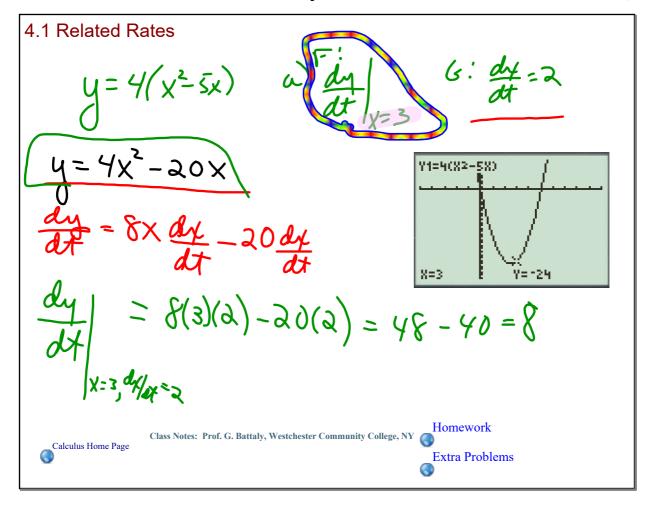

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

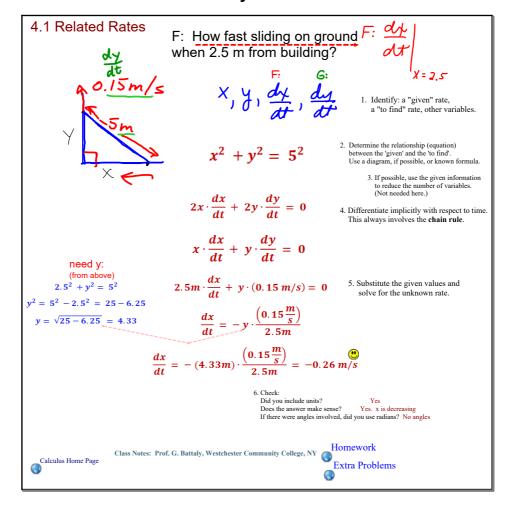
Homework

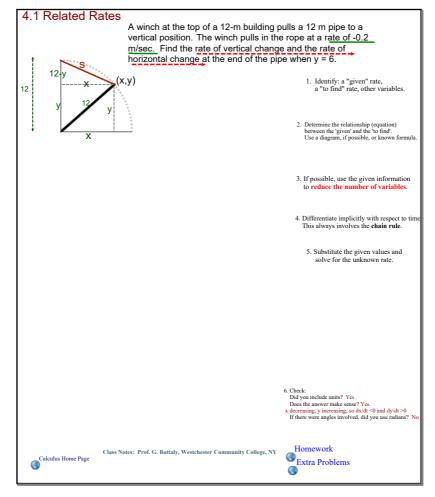
Extra Problems

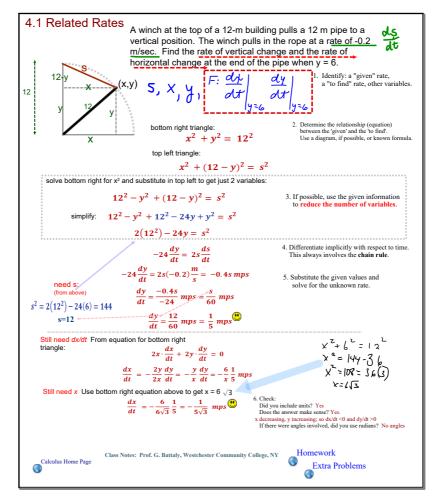
4.1 Related Rates

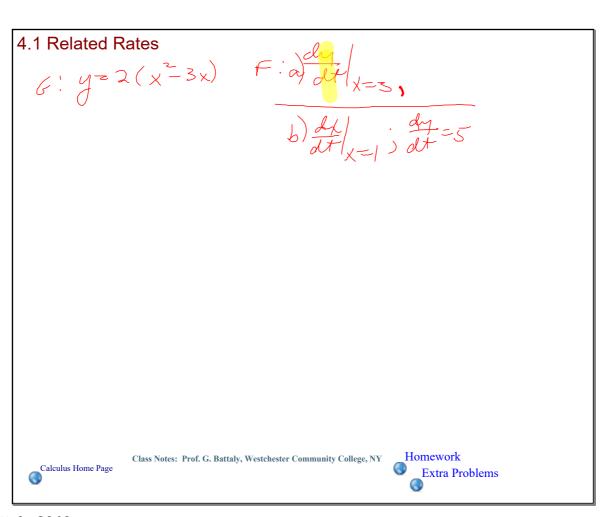


Calculus Home Page


Class Notes: Prof. G. Battaly, Westchester Community College, NY


Homework


Extra Problems



4.1 Related Rates

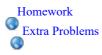
$$G: y = 2(x^{2} - 3x) \qquad F: a dy$$

$$b) dy$$

$$dy = 2(2x dy - 3dy) = 4x dy - 6dy$$

$$dy = (4x - 6) dy = 6 dx$$

$$dy = 6 dx$$

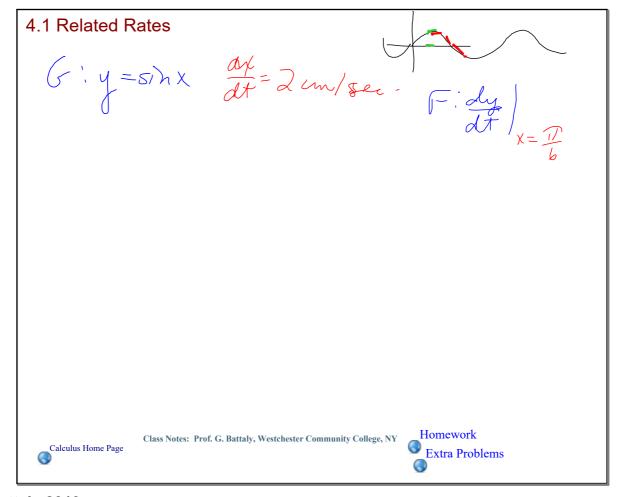

$$dx = 6 dx$$

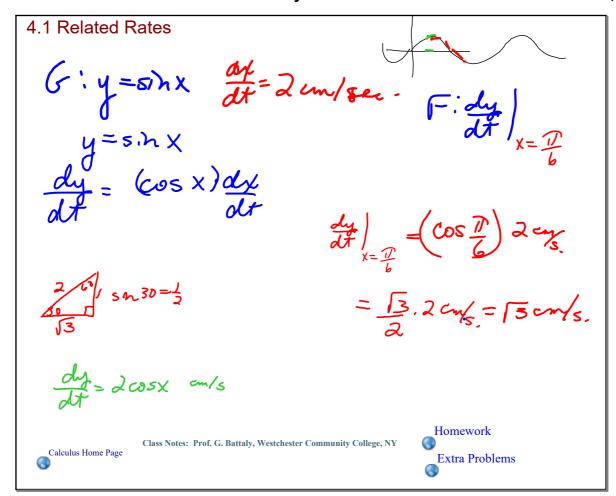
$$dx$$

$$6: y = \frac{1}{1+x^2}, \frac{dx}{dx} = 2 \text{ cm/s}, F' \frac{dy}{dx} \Big|_{X=-2}$$

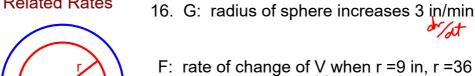
Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY




4.1 Related Rates

$$G: y = \frac{1}{1+x^2}, dx = 2 \text{ cm/s}. \quad \text{Fibrial} \\ X = -2$$


$$II = \frac{1}{1+x^2}, dx = 2 \text{ cm/s}. \quad \text{Fibrial} \\ II = \frac{1}{1+x^2}, dx = 2 \text{ cm/s}.$$

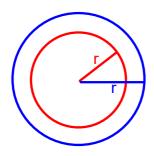
$$II = \frac{1}{1+x^2}, dx = \frac{1}{1+x$$

F: rate of change of V when r = 9 in, r = 36

$$V = \frac{4}{3} \pi r^{2}$$

$$\frac{dV}{dt} = \frac{4}{3} (3\pi r^{2}) \frac{dr}{dt} = 4\pi r^{2} (3) \text{ in/mh}^{2}$$

$$= 12\pi r^{2} \text{ in/min}^{2}$$

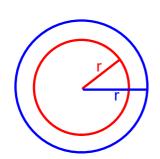

$$= 12\pi (9\text{in/m}) \text{ in/m}^{2} = 81(12)\pi \text{ in/min}^{2}$$

$$\frac{dV}{dt}\Big|_{r=9_{m}} = 1271(9in) in/n = 81(12)7 in/m.$$

Calculus Home Page

4.1 Related Rates




G: dr/dt is constant

F: Is dA/dt constant? Why?

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

G: dr/dt is constant

F: Is dA/dt constant? Why?

$$A = \pi r^2$$

$$\frac{dA}{dt} = \partial \mathcal{D} k_{r}$$

Therefore, *dA/dt* is NOT constant. It varies directly as *r* varies.

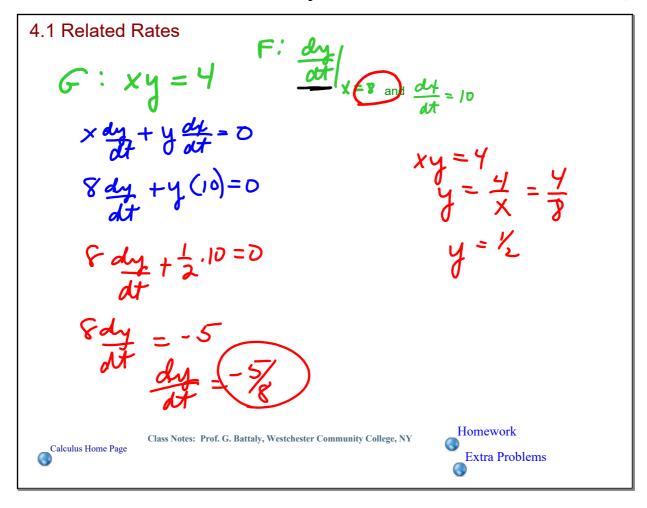
Calculus Home Page

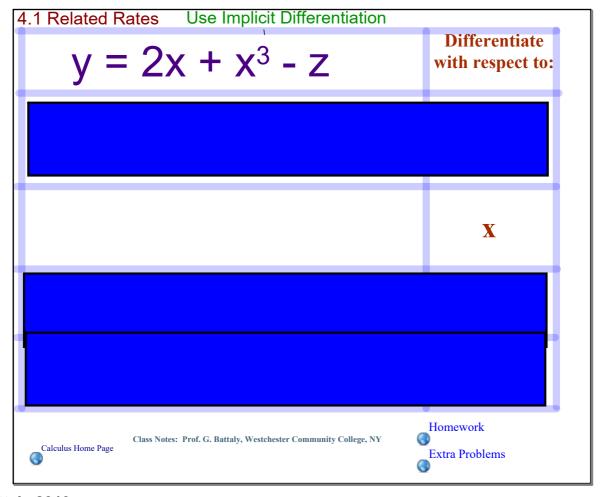
Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework

Extra Problems

4.1 Related Rates




$$\frac{dy}{dt} = 8 \text{ and } \frac{dt}{dt} = 10$$

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework Extra Problems

4.1 Related Rates Use Implicit Differentiation $y = 2x + x^3 - z$	Differentiate with respect to:
$\frac{dy}{dt} = 2\frac{dy}{dt} + 3x^2 \frac{dy}{dt} - \frac{dz}{dt}$	t
$\frac{dy}{dx} = 2 + 3x^2 - \frac{dz}{dx}$	X
$\frac{dy}{dz} = \frac{2}{dz} + 3x^2 \frac{dy}{dz} - 1$	Z
$1 = 2\frac{dx}{dy} + 3x^2 dx - \frac{d^2}{dy}$	y
Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home Page	Homework Extra Problems