Goals:

- 1. Understand that antiderivatives are the functions from which the present derivative was found.
- 2. The process of finding an antiderivative or indefinite integral requires the reverse process of finding a derivative.
- 3. Understand that solving a differential equation means to find the antiderivative of the function.

Study 4.10 #465, 471, 475-483, 487, 491-499, 503-511, 515, 517, 521, 523

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home

Homework

4.10 Antiderivatives: Basic Concepts

Find
$$\frac{dy}{dx}$$
: $y = x^5 - 2x^3$

- 1. multiply coefficient by exponent
- 2. subtract 1 from the exponent

x9-x5= typ

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home

Find
$$\frac{dy}{dx}$$
: $y = x^5 - 2x^3$

$$\frac{dy}{dx} = 5x^4 - 6x^2$$

- 1. multiply coefficient by exponent
- 2. subtract 1 from the exponent

x9-x5= the

Calculus Home

Class Notes: Prof. G. Battaly, Westchester Community College, NY

4.10 Antiderivatives: Basic Concepts

Suppose you are given:

$$f'(x) = 5x^4$$

How would you find f(x)?

Is there only one f(x)?

Calculus Home

Suppose you are given:

$$\int f'(x) = \int 5x^4 dy$$
How would you find $f(x)$?

How would you find
$$f(x)$$
?

$$= \frac{5x^{41}}{4} + C$$

$$= \frac{5x^{5}}{5} + C = x^{5} + C$$

Is there only one f(x)?

Class Notes: Profit News Evolution of the designative:

1. multiply coefficient by expone the design of the design

- 2. subtract 1 from the exponent

Therefore:

- 1. Add 1 to exponent
- 2. Divide by new exponent.

4.10 Antiderivatives: Basic Concepts

Definition, Antiderivative:

A function F is an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

A **Differential Equation** in x and y is an equation that involves x, y, and the derivative of y.

eg:
$$\frac{dy}{dx} = 5x^4 - 6x^2$$

Calculus Home Class Notes: Prof. G. Battaly, Westchester Community College, NY

So far, we have **created** differential equations by finding derivatives. Now, we reverse the process. start with the definition of the differential of y

Definition of dy:

Let y = f(x) represent a function that is differentiable on an open interval containing x. The differential of x (dx) is any nonzero real number.

The differential of y(dy) is:

$$dy = f'(x) dx$$
 $dy = \underline{dy} dx$

Proceed to solve a differential equation to find y.

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home Homework

4.10 Antiderivatives: Basic Concepts

Antidifferentiation or **Indefinite Integration**

The operation of finding all the solutions to the differential equation, dv = f(x) dx, is called antidifferentiation or indefinite integration and is denoted by the integral sign \(\int \). The solution when F'(x) = f(x) is:

$$y = \int f(x) dx = F(x) + c$$
integrand variable constant of integration of integration

looking for the function, F(x), for which the integrand is the derivative, F'(x) = f(x)

Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework Calculus Home 0

© G. Battaly 2018

Solve the differential equation:

$$\frac{dy}{dx} = 5x^4$$

- $dy = \frac{dy}{dx} dx$
- 1. Write definition of differential.

- 2,3 dy
- df
- 2. Substitute given function as the derivative.

4 4 =

Insert integral signs
 (function is now the integrand)

O

4. Integrate.
Note: this has NO integral sign and NO differentials

5. Simplify.

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home

Homework

4.10 Antiderivatives: Basic Concepts

Solve the differential equation:

- 1. dy= dy ax
- 1. Write definition of differential.
- 2,3 dy= 5x 4 dy
- 2. Substitute given function as the derivative.
- $4 \qquad y = \frac{5x}{5} + c$
- 3. Insert integral signs (function is now the integrand)
- 5 Y= X5+ C
- 4. Integrate.
 Note: this has NO integral sign and NO differentials
- 5. Simplify.

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home

$$y = \int f(x)dx = F(x) + c$$
integrand variable constant of integration of integration

Note: Operators \int and dx are no longer present after the operation of integration is performed.

The integral sign \int and dx indicate the operation of integration the same way that a plus sign indicates the operation of addition.

For the division problem, $12 \div 2 = 6$, the result no longer has the operator, \div Instead, it contains only the result, 6.

Likewise, for integration, the result no longer has either the integral sign \int or the dx. Therefore, to continue to write the \int or the dx after the operation of integration has been performed is not correct.

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Calculus Home

Calculus Home

4.10 Antiderivatives: Basic Concepts

Rules of:

<u>Differentiation</u>

$$\frac{d(c)}{dx} = 0$$

$$d(kx) = k$$

$$\frac{d(x^n)}{dx} = nx^{n-1}$$

$$\underline{\mathsf{d}(\mathsf{sinx})} = \mathsf{cos}\;\mathsf{x}$$

$$\frac{d(\cos x)}{dx} = -\sin x$$

Integration

$$\int 0 \, dx = c$$

$$\int k \, dx = kx + c$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

$$\int \cos x dx = \sin x + c$$

$$\int sinxdx = -cosx + c$$

$$-\int -\sin x dx = -\cos x + \cos x$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home

 $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home

Homework

4.10 Antiderivatives: Basic Concepts

$$\int 8x^3 dx = 8 \frac{x^4}{4} + C$$

$$= 2X + C$$

 $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

check: $\frac{d(2x^4+c)}{dy}$

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home

$$\int \left(8x^3 + \frac{1}{2x^2}\right) dx$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework

4.10 Antiderivatives: Basic Concepts

$$\int (8x^{3} + \frac{1}{2x^{2}}) dx = \int (8x^{3} + \frac{1}{2}x^{-2}) dx$$

$$= \frac{8x}{4} + \frac{1}{2} \frac{x^{-1}}{1} + C$$

$$= 2 \times 4 - \frac{1}{2X} + C$$

$$=2x^4-\frac{1}{2x}+C$$

check:
$$\frac{d(2x^{4} - \frac{1}{2}x^{-1} + c)}{dx}$$

$$= 8x^{3} + \frac{1}{2}x^{-2} + 0$$

$$= 5x^{3} + \frac{1}{2}x^{2}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home

$$\int \frac{1}{X^3} dx$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework

4.10 Antiderivatives: Basic Concepts

$$\int \frac{1}{4x^2} dx = \frac{1}{4} \int x^{-2} dx$$

$$= \frac{1}{4} \int x^{-1} dx = -\frac{1}{4x} + c$$

$$\int \frac{1}{x^3} dx = \int x^{-3} dx = \frac{x^{-2}}{-2} + c$$

$$= -\frac{1}{2x^2} + c$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home

Homework

4.10 Antiderivatives: Basic Concepts

$$= \frac{8x^{4}}{4} - \frac{9x^{3}}{3} + 4x + c$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home

$$\int \cos x \, dx =$$

$$\int \sin x \, dx =$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework

4.10 Antiderivatives: Basic Concepts

$$\int \cos x \, dx = \sin x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \sin x \, dx = -\cos x + C$$

Calculus Home Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework

4.10 Antiderivatives: Basic Concepts

$$\int \frac{\sin x}{1-\sin^2 x} dx = \int \frac{\sin x}{\cos^2 x} dx$$

$$= \int \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} dx$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Calculus Home

G:
$$\int (x) = x^2$$
 $\int (x) = 8$ 1. Start with 2nd Derivative. Integrate 2. Substitute given to find c. 3. State 1st Derivative 4. Integrate 1st Derivative 5. Substitute given to find c_2 . 6. State function.

Homework

13

6. State function.

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home

> 4.10 Antiderivatives: Basic Concepts G: $\int_{-\infty}^{\infty} (x) = x^2$, $\int_{-\infty}^{\infty} (0) = 8$, $\int_{-\infty}^{\infty} (0) = 4$ F: Solve the diff eq. F: $\int_{-\infty}^{\infty} (x) dx = \int_{-\infty}^{\infty} x^2 dx = \frac{3}{3} + C$ 1. Start with f''(x). Integrate $= \frac{1}{3} \frac{x^4}{4} + 8x + C_2 = \frac{1}{12} x^4 + 8x + C_2$ 5. Substitute given to find c_2 . $f(\delta) = \frac{1}{12} \cdot 0 + 8(\delta) + C_2 = 4 \cdot C_2 = 4$

© G. Battaly 2018

- 4.10 Antiderivatives: Basic Concepts
 - Find: Indefinite Integral & Check by Differentiation

$$\int \frac{\chi + L}{\sqrt{\chi}} d\chi$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework

4.10 Antiderivatives: Basic Concepts

Find: Indefinite Integral & Check by Differentiation

$$\int \frac{X+L}{X} dy = \int \frac{X+L}{X^k} dx = \int \left(\frac{X}{X^{k}} + \frac{L}{X^{k}}\right) dx$$

$$= \int \left(X^{k_2} + 6X^{k_2}\right) dx$$

$$= \frac{3}{3} + 6X^{k_1} + C = \frac{3}{3}X^{k_1} + 12X^{k_2} + C$$

$$= \frac{3}{3}X + 12X^{k_1} + C$$

$$= \frac{3}{3}X + 12X^{k_2} + C$$

$$= \frac{3}{3}X + 12X^{k_1} + C$$

$$= \frac{3}{3}X + 12X^{k_2} + C$$

$$= \frac{3}{3}X + 12X^{k_1} + C$$

$$= \frac{3}{3}X + 12X^{k_2} + C$$

$$= \frac{3}{3}X + 12X^{k_1} + C$$

$$= \frac{3}{3}X + 12X^{k_2} + C$$

$$= \frac{3}{3}X + 12X^{k_1} + C$$

$$= \frac{3}{3}X + 12X^{k_2} + C$$

$$= \frac{3}{3}X + 12X^{k_1} + C$$

$$= \frac{3}{3}X + 12X^{k_2} + C$$

$$= \frac{3}{3}X + 12X^{k_1} + C$$

$$= \frac{3}{3}X + 12X^{k_2} + C$$

$$= \frac{3}{3}X + 12X^{k_1} + C$$

$$= \frac{3}{3}X + 12X^{k_2} + C$$

$$= \frac{3}{3}X + 12X^{k_1} + C$$

$$= \frac{3}{3}X + 12X^{k_2} + C$$

$$= \frac{3}{3}X + 12X^{k_1} + C$$

$$= \frac{3}X + 12X^{k_1} + C$$

$$= \frac{3}{3}X + 12X^{k_1} + C$$

$$= \frac{3}X + 12X^{k_1} + C$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Calculus Home

© G. Battaly 2018

Think Questions: True or False?

- 1. The antiderivative of f(x) is unique.
- 2. Each antiderivative of an nth-degree polnomial function is an (n+1)th degree polynoial function.
- 3. If p(x) is a polynomial function, then p has exactly one antiderivative whose graph contains the origin.
- 4. If F(x) and G(x) are antiderivatives of f(x), then F(x) = G(x) + c
- 5. If f'(x) = g(x), then $\int g(x) dx = f(x) + c$
- 6. $\int f(x)g(x)dx = \int f(x)dx \int g(x)dx$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework

Calculus Home

4.10 Antiderivatives: Basic Concepts

Think Questions: True or False?

- \mathbf{f} 1. The antiderivative of f(x) is unique.
- \mathcal{T} 3. If p(x) is a polynomial function, then p has exactly one antiderivative whose graph contains the origin.
- \top 5. If f'(x) = g(x), then $\int g(x) dx = f(x) + c$
- F 6. $\int f(x)g(x)dx = \int f(x)dx \int g(x)dx$

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home

4.10 Antiderivatives: Basic Concepts

Find a function f such that the graph of f has a horizontal tangent at (2,0) and f "(x) = 2x

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework

© G. Battaly 2018 17