

© G. Battaly 2019

- 3.5 Derivatives of Trig Functions Investigate: <u>d [sin(x)]</u> 1. Go to: https://www.geogebra.org/classic This opens an online software called geogebra. 2. Click upper right bars and select the folder option. 3. In the window for the file name, type: http://www.battaly.com/calc/geogebra/trig/derivative sinx.ggb 4. Click the X under the previous bars to clear the graphing window. 5. Then click the circles to the left of $f: y = \sin(x)$ and A=(c,sin(c))6. Click and drag either the point A or the c bar and watch the point move along the curve of $y=\sin(x)$ Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework Calculus Home Page Calc Web Pages
- 3.5 Derivatives of Trig Functions

 Investigate: d[sin(x)]

 dx
 - 7. Click the circle to the left of T, the tangent line at point A.
 - 8. Notice the slope of the tangent line. What is its value? What is it, in words? How does it change as the A is moved? When is it positive? negative? zero?
 - 9. Find point B on the left side, and click the circle to the left of B. B has the same x-coordinate as A, but its y-coordinate is the slope of the tangent line T or the derivative of y=sin(x) at that x value.
 - 10. Move point A to see what happens to point B.
 - 10. Return to point B on the left. Right click on it and Turn ON SHOW TRACE. Then move point A again.
 - 11. What do you see? What does the resulting curve represent?

© G. Battaly 2019 2

3.5 Derivatives of Trig Functions Investigate:
$$\frac{d[\sin(x)]}{dx}$$

Just finished a very visual representation of the derivative of $\sin(x)$

Definition

Let f be a function. The derivative function, denoted by f is the function whose domain consists of those values of x such that the following limit exists:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x) = S \ln x$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{$$

© G. Battaly 2019

Derivatives of Trig Functions

Co-functions: derivatives are neg

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

3.5 Derivatives of Trig Functions

$$178. \quad y = x - x^3 \sin x$$

180.
$$y = \sin x \tan x$$

$$182. \quad y = \frac{\tan x}{1 - \sec x}$$

188. **[T]**
$$f(x) = \sec x, \ x = \frac{\pi}{4}$$

F: tangent line

$$\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

202. After a diver jumps off a diving board, the edge of the board oscillates with position given by $s(t) = -5\cos t$ cm at t seconds after the jump.

- a. Sketch one period of the position function for $t \ge 0$.
- b. Find the velocity function.
- c. Sketch one period of the velocity function for t > 0.
- d. Determine the times when the velocity is 0 over one period.
- e. Find the acceleration function.
- f. Sketch one period of the acceleration function for $t \ge 0$.

198. Find all x values on the graph of $f(x) = x - 2\cos x$ for $0 < x < 2\pi$ where the tangent line has slope 2.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

$$178. \quad y = x - x^3 \sin x$$

$$\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

3.5 Derivatives of Trig Functions

$$178. \quad y = x - x^3 \sin x$$

$$\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$F: dy = 1 - \left[\frac{X^3(\cos x) + (\sin x)(3x^2)}{dx} \right]$$
$$= 1 - \left[\frac{X^3(\cos x) + (\sin x)(3x^2)}{3x^2} \right]$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

```
3.5 Derivatives of Trig Functions

\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\cos x) = -\sin x

\frac{d}{dx}(\tan x) = \sec^2 x \qquad \frac{d}{dx}(\cot x) = -\csc^2 x

\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x

\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x

Class Notes: Prof. G. Battaly, Westchester Community College, NY
Calculus Home Page

\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\cos x) = -\sin x \qquad \frac{d}{dx}(\cot x) = -\csc^2 x \qquad \frac{d}{dx}(\cot x) = -\csc x \cot x

Homework
```


© G. Battaly 2019 6

182.
$$y = \frac{\tan x}{1 - \sec x}$$

$$\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

3.5 Derivatives of Trig Functions

$$182. \quad y = \frac{\tan x}{1 - \sec x}$$

$$\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

F: eq of tangent line at
$$x = \frac{\pi}{4}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

$$\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \frac{d}{dx}(\cot x) = -\csc x \cot x$$

$$\frac{d}{dx}(\csc x) = \sec x \tan x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

© G. Battaly 2019 8

202. After a diver jumps off a diving board, the edge of the board oscillates with position given by $s(t) = -5\cos t$ cm at t seconds after the jump.

- a. Sketch one period of the position function for $t \ge 0$.
- b. Find the velocity function.
- c. Sketch one period of the velocity function for $t \ge 0$.
- d. Determine the times when the velocity is 0 over one period.
- e. Find the acceleration function.
- f. Sketch one period of the acceleration function for t > 0.

$$\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

Derivative Practice

202. After a diver jumps off a diving board, the edge of the board oscillates with position given by $s(t) = -5\cos t$ cm at t seconds after the jump.

- $\frac{d}{dx}(\sin x) = \cos x \qquad \qquad \frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$
- a. Sketch one period of the position function for $t \ge 0$. $\frac{d}{dx}(\sec x) = \sec x \tan x \quad \frac{d}{dx}(\csc x) = -\csc x \cot x$ $t \ge 0.$ $v(t) = s \quad v(t) = -5(-\sin t) = 5\sin t$
- Find the velocity function.

Sketch one period of the velocity function for

- $t \geq 0$. d. Determine the times when the velocity is 0 over one
- v(t)=0 at $t=0,\pi, 2\pi$ period.
- Find the acceleration function.
- Sketch one period of the acceleration function for

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

Homework

3.5 Derivatives of Trig Functions

178.
$$y = x - x^3 \sin x$$

180.
$$y = \sin x \tan x$$

$$182. \quad y = \frac{\tan x}{1 - \sec x}$$

188. **[T]**
$$f(x) = \sec x, \ x = \frac{\pi}{4}$$

F: tangent line

$$\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

202. After a diver jumps off a diving board, the edge of the board oscillates with position given by $s(t) = -5\cos t$ cm at t seconds after the jump.

- a. Sketch one period of the position function for $t \ge 0$.
- b. Find the velocity function.
- c. Sketch one period of the velocity function for $t \geq 0$.
- d. Determine the times when the velocity is 0 over one
- Find the acceleration function.
- f. Sketch one period of the acceleration function for $t \geq 0$.

198. Find all *x* values on the graph of $f(x) = x - 2\cos x$ for $0 < x < 2\pi$ where the tangent line has slope 2.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

 $\frac{d}{dx}(\cos x) = -\sin x$

 $\frac{d}{dx}(\sin x) = \cos x$

3.5 Derivatives of Trig Functions

198. Find all x values on the graph of $f(x) = x - 2\cos x$ $f(x) = \sec^2 x$ where the tangent line has slope 2.

Derivative Practice

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

Homework

© G. Battaly 2019

$$= \frac{2 \operatorname{cac} x}{(1+\cot x)^{2}} = \frac{2 \cdot \sin^{2} x}{(1+\cot x)^{2}} = \frac{2$$