2.1 Tangent, Velocity, Area

GOALS: Understand

- 1. What are tangent lines?
- 2. What are secant lines?
- 3. How do slopes of tangent lines relate to slopes of secant lines?
- 4. How does the slope of a tangent line relate to the slope of the function at the point in common to both.
- 5. What is average velocity?
- 6. What is instantaneous velocity?
- 7. How can we find areas beneath curves?

Study 2.1 # 1, 2, 3, 7, 9, 16, 17, 24, 25

Class Notes: Prof. G. Battaly

Calculus Home Page

Calculus Home Page

2.1 Tangent U = MX

hat is the slope of a secant ling

$$m_{\text{sec}} = \underline{y_2 - y_1} = \underline{9 - 1} = \underline{8} = 4$$

 $x_2 - x_1 = 3 - 1 = \underline{8}$

Slope is the rate of change of y with respect to x.

For a **straight line**, this is **constant**? ie: y changes at the same rate

no matter what values of x we select.

For a curve, this is variable.

ie: we expect y to change at a different rate for different values of x

Calculus:

How do we find the rate of change of y with respect to x for curves?

tangent line

Class Notes: Prof. G. Battaly

Calculus Home Page

What is the slope of a secant line?

What is the slope of a secant line

tangent line

Class Notes: Prof. G. Battaly

Calculus Home Page

_Homework on the Web

2.1 Tangent

What is the slope of a secant line?

- $m_{\text{sec}} = \underline{y_2 y_1} = \underline{9 1} = \underline{8} = 4$
- $m_{\text{sec}} = \underline{y_2 y_1} = \underline{4 1} = \underline{3} = 3$

What is the slope of a secant line?

slope of a secant line from C(1,1) to:0

A(x,y)	m_{sec}
(3,9)	4
(2,4)	3
(1.5,2.25)	2.5
(1.1,1.21)	2.1
(1.01,1.0201)	2.01

1.0201-1

What value does m_{sec} approach A(x,y) gets closer to C(1,1)?

Class Notes: Prof. G. Battaly
Calculus Home Page

What is the slope of a secant line?

- $m_{\text{sec}} = \underbrace{y_2 y_1}_{X_2 X_1} = \underbrace{9 1}_{3 1} = \underbrace{8}_{2} = 4$
- $m_{\text{sec}} = \underbrace{y_2 y_1}_{X_2 X_1} = \underbrace{4 1}_{2 1} = \underbrace{3}_{1} = 3$

What is the slope of a secant line?

slope of a secant line from C(1,1) to:0

What value does m_{sec} approach as A(x,y) gets closer to C(1,1)?

m_{sec} --> m_{tan}

Class Notes: Prof. G. Battaly

tangent line Homework on the Web

tangent line

2.1 Tangent

Calculus Home Page

What is the slope of a secant line?

- $m_{\text{sec}} = \underline{y_2 y_1} = \underline{9 1} = \underline{8} = 4$
- $m_{\text{sec}} = \underbrace{y_2 y_1}_{X_2 X_1} = \underbrace{4 1}_{2 1} = \underbrace{3}_{1} = 3$
- $m_{\text{sec}} = \underline{y_2 y_1} = \underline{2.25 1} = \underline{1.25} = 2.5$

slope of a secant line from C(1,1) to:

siopo oi a occarit ilito iloili t	
A(x,y)	m_{sec}
(3,9)	4
(2,4)	3
(1.5,2.25)	2.5
(1.1,1.21)	2.1
(1.01,1.02)	2.01
(1.0001,1.00020001)	? 2.0001
(1,1)	?

 $y = x^2$

What value does m_{sec} approach as A(x,y) gets closer to C(1,1)?

 $m_{sec} \longrightarrow 2$

Class Notes: Prof. G. Battaly

tangent line Homework on the Web

Calculus Home Page

What is the slope of a secant line?

$$m_{\text{sec}} = \underbrace{y_2 - y_1}_{X_2 - X_1} = \underbrace{4 - 1}_{2 - 1} = \underbrace{3}_{1} = 3$$

■
$$m_{\text{sec}} = \underline{y_2 - y_1} = \underline{2.25 - 1} = \underline{1.25} = 2.5$$

slope of a secant line from C(1,1) to:

A(x,y)	m_{sec}
(3,9)	4
(2,4)	3
(1.5,2.25)	2.5
(1.1,1.21)	2.1
(1.01,1.02)	2.01
(1.0001,1.00020001	2.0001
(1,1)	?

Calculus Home Page

What value does m_{sec} approach as A(x,y) gets closer to C(1,1)?

$$m_{sec} --> 2$$

But 1-1 DNE DIV BY 0

m_{sec} --> m_{tan} but cannot use slope formula to find

Class Notes: Prof. G. Battaly

What is a tangent line?

Tangent Line:

- ■A line that touches a curve at a point without crossing over.
- ■A line which intersects a (differentiable) curve at a point where the slope of the curve equals the slope of the line.

Calculus Home Page

Class Notes: Prof. G. Battaly

Homework on the Web

2.1 Tangent

How do slopes of tangent lines relate to slopes of secant lines?

■They are only related if one of the points defining the secant line is also a point on the curve and on the tangent line.

■As the point not in common approaches the common point, the slope of the secant approaches the slope of the tangent.

tangent

Class Notes: Prof. G. Battaly

tangent line

Calculus Home Page

skip

Example: 2.1 # 2 (stewart)

Cardiac monitor: number of heart eats after t minutes

40 42 44 t(min) 36 38

beats 2530 2661 2806 2948 3080

Estimate heart rate after 42 minutes using secant line between

- a) t=36 and t=42
 - b) t=38 and t=42
- c) t=40 and t=42 d) t=42 and t=44.

L2

L2(6) =

2806 2948

What are your conclusions?

tangent line

Class Notes: Prof. G. Battaly

Homework on the Web

2.1 Tangent

Example: 2.1 # 2 (stewart)

but need to avoid division by zero, so change 42 in L1 to 42.01

Not really conclusive, but can average all, w/o 0; or could average the 2 closest

Get 68.5 for 2 closest.

Get 69.6 for all

Linear regression gets slope of 69.2

Class Notes: Prof. G. Battaly

2.1 Velocity

Montauk Point is 150 miles away. I am planning to go birding there this weekend. If it takes me 3 hours to get there, how fast will I travel?

What is this speed of travel called? $\frac{150}{3} \text{ kr.} = \frac{150}{3} \text{ kr.}$

Do I travel at that speed when I leave my driveway? When I am on the LI expressway?

How fast could I be travelling at any time during the trip?
What is this called?

tangent line

Class Notes: Prof. G. Battaly

Homework on the Web

2.1 Velocity

Montauk Point is 150 miles away. I am planning to go birding there this weekend. If it takes me 3 hours to get there, how fast will I travel? 150 = 50 mph

What is this speed of travel called?

average velocity, or speed (no direction)

Do I travel at that speed when I leave my driveway? When I am on the LI expressway?

No. probably drive at -5 mph backing up No. probably drive at 55 mph or 60 mph

How fast could I be travelling at any time during the trip?

What is this called? instantaneous velocity: rate of change at a specific time, t tangent line

Class Notes: Prof. G. Battaly

Calculus Home Page

2.1 Velocity

Average Velocity

s(t) is the position of an object moving along a coordinate axis at time t. The average velocity of the object over a time interval [a, t] is

$$v_{ave} = \underline{s(t)} - \underline{s(a)} = \underline{\Delta s}$$

 $t - a$ Δt

Instantaneous Velocity

The instantaneous velocity at the time *t=a* is the value that the average velocities approach as *t* approaches *a*, assuming that the value exists.

$$\frac{h(t) - h(t)}{t-1} \quad h(t) = |St-4.9t^2|$$

$$\frac{h(t) - h(t)}{t-1} \quad h$$

```
\frac{h(t) - h(t)}{t-1} \quad h(t) = |St-4.9t|^2
\frac{h(t) - h(t)}{t-1} \quad h
```

2.1 Velocity

For the following exercises, consider a stone tossed into the $\frac{3}{2} = \frac{5(\xi) - 5(1)}{\xi - 1}$ air from ground level with an initial velocity of 15 m/sec.

Its height in meters at time *t* seconds is $h(t) = 15t - 4.9t^2$. 18. **[T]** Compute the average velocity of the stone over the

 $= \frac{15t - 4.1t^2 - (15 - 4.7)}{t - 1}$

- given time intervals. a. [1, 1.05]
 - b. [1, 1.01]
 - c. [1, 1.005]
 - d. [1, 1.001]

 $= \frac{(5t - 4.9t^2 - (10.1))}{t - 1}$

19. Use the preceding exercise to guess the instantaneous velocity of the stone at t = 1 sec.

tangent line

Class Notes: Prof. G. Battaly

Calculus Home Page

Homework on the Web

2.1 Area

For the following exercises, consider the function $f(x) = \sqrt{1 - x^2}$. (*Hint*: This is the upper half of a circle of radius 1 positioned at (0, 0).)

26. Sketch the graph of f over the interval [-1, 1].

27. Use the preceding exercise to find the exact area between the x-axis and the graph of f over the interval [-1, 1] using rectangles. For the rectangles, use squares 0.4 by 0.4 units, and approximate both above and below the lines. Use geometry to find the exact answer.

Class Notes: Prof. G. Battaly

Calculus Home Page

Homework on the Web

2.1 Area

For the following exercises, consider the function $f(x) = \sqrt{1 - x^2}$. (*Hint*: This is the upper half of a cradius 1 positioned at (0, 0).)

26. Sketch the graph of f over the interval [-1, 1]

27. Use the preceding exercise to find the exabetween the x-axis and the graph of f over the [-1, 1] using rectangles. For the rectangles, use 0.4 by 0.4 units, and approximate both above and be lines. Use geometry to find the exact answer.

0.4*0.8 + 0.4*0.980+0.4*0.980+0.4*0.8+0.4*0= 0.4(0.8 + 0.980+0.980+0.8+0) = 0.4*3.560 = 1.424

$$A = (1/2) \pi r^2 = (1/2) \pi (1) = \pi/2 = 1.5708$$
 actual

For 10 rectangles of width 0.2 would get:

 $\begin{array}{l} 0.2^*f(-0.8) + 0.2^*f(-0.6) + 0.2^*f(-0.4) + 0.2^*f(-0.2) + 0.2^*f(0) + 0.2^*f(0.2) + 0.2^*f(0.4) + 0.2^*f(0.6) \\ + 0.2^*f(0.8) + 0.2^*f(1) &= 0.2[0.6 + 0.8 + 0.9165 + 0.9798 + 1 + 0.9798 + 0.9165 + 0.8 + 0.6 + 0] \\ = 0.2^*7.5926 &= \textbf{1.51852} \quad \textbf{getting closer to actual} \end{array}$

Class Notes: Prof. G. Battaly

Calculus Home Page

Homework on the Web