11.5 Alternating Series; 11.6 Convergence, Ratio, Root Tests

Goals:

- 1. Recognize Alternating Series: terms alternate between positive and negative.
- 2. Apply the Alternating Series Test: conditions for convergence of alternating series
- 3. Conditional and Absolute Convergence: compare convergence of alternating series to convergence of series of absolute values
- 4. Approximate a series' sum, S, by its nth partial sum, s_n .
- 5. For s_n approx, Remainder: $|R_N| = |S s_N| < a_{N+1}$
- 6. Use Ratio Test, esp. for series with factorials.
- 7. Use Root test, esp. for series with powers of n.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

HW 11.5

Calculus Home Page

11.5 Alternating Series

Alternating Series: Let $a_n > 0$

$$\sum_{n=1}^{\infty} (-1)^n a_n = -a_1 + a_2 - a_3 + a_4 - \dots$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \dots$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

lim ∞

HW 11.5

 $\sum_{n=1}$

11.5 Alternating Series

Alternating Series:

Let
$$a_n > 0$$

$$\sum_{n=1}^{\infty} (-1)^n a_n = -a_1 + a_2 - a_3 + a_4 - \dots$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \dots$$

Alternating Series Test:

$$\sum_{n=1}^{\infty} (-1)^n a_n = \sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_n > 0$$
 Converge if:

$$\lim_{n\to\infty} a_n = 0$$

2.
$$a_{n+1} \le a_n$$
 for all n

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

HW 11.5

11.5 Alternating Series

Alternating Series Test:

$$\sum_{n=1}^{\infty} (-1)^n a_n \quad \sum_{n=1}^{\infty} (-1)^{n+1} a_n \quad a_n > 0 \text{ Converge if:}$$

$$1. \quad \lim_{n\to\infty} a_n = 0\sqrt{}$$

1.
$$\lim_{n \to \infty} a_n = 0$$
 2. $a_{n+1} \le a_n$ for all n

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$$
 Converge? or diverge?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

HW 11.5

11.5 Alternating Series

Alternating Series Test:

$$\sum_{n=1}^{\infty} (-1)^n a_n \quad \sum_{n=1}^{\infty} (-1)^{n+1} a_n \quad a_n > 0 \text{ Converge if:}$$
1. $\lim_{n \to \infty} a_n = 0 \sqrt{2}$. $a_{n+1} \le a_n \text{ for all } n$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$$
 Converge? or diverge?

$$a_n = \frac{1}{n^3} > 0$$
 $\lim_{n \to \infty} \frac{1}{n^3} = 0$ $\frac{1}{(n+1)^3} \le \frac{1}{n^3}$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$$
 Converges by alternating series test

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

 $\sum_{n=1}^{\infty}$

11.5 Alternating Series Alternating Series Test:

$$\sum_{n=1}^{\infty} (-1)^n a_n \quad \sum_{n=1}^{\infty} (-1)^{n+1} a_n \quad a_n > 0 \text{ Converge if:}$$
1. $\lim_{n \to \infty} a_n = 0$ 2. $a_{n+1} \le a_n$ for all $n = 0$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

Similar to harmonic series, but is alternating. Harmonic series diverges. Does this? Converge? or diverge?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

 $\sum_{n=1}$

11.5 Alternating Series **Alternating Series Test:**

$$\sum_{n=1}^{\infty} (-1)^n a_n \quad \sum_{n=1}^{\infty} (-1)^{n+1} a_n \quad a_n \neq 0 \text{ Converge if:}$$
1.
$$\lim_{n \to \infty} a_n = 0 \checkmark \qquad 2. \qquad a_{n+1} \leq a_n \checkmark \text{for all } n$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 Converge? or diverge?

$$a_n = \frac{1}{n} > 0$$
 $\lim_{n \to \infty} \frac{1}{n} = 0$ $\frac{1}{n+1} \le \frac{1}{n}$ for all n

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 Converges by alternating series test

return

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

11.5 Alternating Series; 11.6 Convergence, Ratio, Root Tests **Definitions:**

Conditionally Convergent: The series Σa_n is conditionally convergent if the series converges, but the series $\Sigma |a_n|$ diverges.

Absolutely Convergent: The series Σa_n is absolutely convergent if the series $\Sigma |a_n|$ converges.

Theorum:

If $\Sigma |a_n|$ converges, then Σa_n converges.

Remainder: Given a convergent alternating series with sum S, the absolute value of the remainder satisfies:

$$|R_N| = |S - S_N| \le a_{N+1}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY 1
age

HW 11.5 HW 11.6

Calculus Home Page

Series	Σa _n	$\Sigma a_n $	Туре	р
$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$	С	С	Absolute Convergence	3
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$	С	D	Conditional Convergence	1
$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$	С	D	Conditional Convergence	1/2

© G. Battaly 2017 5

11.3 Integral Test

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots$$

The Integral Test:
Let $\mathbf{f}(\mathbf{x}) > 0$, continuous, and decreasing, $\mathbf{x} \ge 0$, and $\mathbf{a}_n = \mathbf{f}(\mathbf{n})$.

Then, $\sum_{n=1}^{\infty} \mathbf{a}_n \text{ and } \int_{1}^{\infty} \mathbf{f}(\mathbf{x}) d\mathbf{x}$ either both converge or both diverge

Converge? or diverge?

$$f(x) = \frac{1}{\sqrt{x}} > 0$$
, continuous, decreasing for $x > 0$

$$\int_{1}^{\infty} x^{-1/2} dx = \lim_{b \to \infty} \left[2x^{\frac{1}{2}} \right]_{1}^{b} = \lim_{b \to \infty} \left[2\sqrt{b} - 2 \right]_{1}^{b} \therefore \text{ Both integral and Series Diverge}$$

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{\sqrt{n}} \quad a_n = \frac{1}{\sqrt{n}} > 0 \quad \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0 \quad \frac{1}{\sqrt{n+1}} \le \frac{1}{\sqrt{n}} \text{ for all } n$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

Converges by alternating series test

return

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

 $\sum_{n=1}^{\infty}$

β11.5 Alternating Series

Remainder: Given a convergent alternating series with sum S, the absolute value of the remainder satisfies:

$$|R_N| = |S - S_N| \le a_{N+1}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

Converges by alternating series test What is the sum, S, of the series? Can we estimate S by using s_n , eg: s_{999} ? What error is associated with the estimate?

sum(seq(Y1,x,1,999)) with Y1 = (-1)x+1/x results in 0.69364743

Can use s₉₉₉ as estimate of S: S ≈ 0.693647

The error generated by using the estimate is bounded by the value of $s_{1000} = 1/1000$

$$|R_N| = |S - S_N| < a_{N+1} = 1/1000$$

using n=1000 caused an overflow on my calculator

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

HW 11.5 HW 11.6

 $\sum_{n=1}^{\infty}$

11.6 Convergence, Ratio, Root Tests

Ratio Test: Let Σa_n be a series with nonzero terms.

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$
 Then the series converges absolutely

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$
 Then the series diverges

The test is inconclusive if
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$

Especially useful for series having factorials.

11.6 Convergence, Ratio, Root Tests

$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$
 Converge? or diverge? all terms nonzero, has factorial, \therefore use ratio test

all terms nonzero, has factorial, \therefore use ratio test $\sum_{n=1}^{\infty}$ Class Notes: Prof. G. Battaly, Westchester Community College, NY
Calculus Home Page $\infty \text{ HW 11.5 } \text{HW 11.6}$

11.6 Convergence, Ratio, Root Tests

$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$

Converge? or diverge?

all terms nonzero, has factorial, ∴ use ratio test

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{2^{n+1}/(n+1)!}{2^n/n!} \right| = \lim_{n \to \infty} \left| \frac{2^{n+1}}{2^n} \frac{n!}{(n+1)!} \right|$$

$$= \lim_{n \to \infty} \left| \frac{2}{(n+1)} \right| = 0 < 1$$

$$(n+1)! = (n+1)n!$$

The series converges absolutely

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

11.6 Convergence, Ratio, Root Tests

$$\sum_{n=1}^{\infty} n \left(\frac{6}{5}\right)^n$$
 Converge? or diverge? all terms nonzero, not obvious

all terms nonzero, not obvious which, try ratio test

$$\lim_{n\to\infty}\left|\frac{\mathsf{a}_{\mathsf{n+1}}}{\mathsf{a}_{\mathsf{n}}}\right|$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

11.6 Convergence, Ratio, Root Tests

$$\sum_{n=1}^{\infty} n \left(\frac{6}{5}\right)^n$$
 Converge? or diverge? all terms nonzero, not obvious

all terms nonzero, not obvious which, try ratio test

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)/(6/5)^{n+1}}{n/(6/5)^n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)}{n} \left(\frac{6}{5} \right) \right|$$

$$=\frac{6}{5} > 1$$

The series diverges

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

11.6 Convergence, Ratio, Root Tests

Root Test: Let Σa_n be a series

 $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ < 1 Then the series converges absolutely

 $\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1$ Then the series diverges

 $\lim_{n\to\infty} \sqrt[n]{|\mathbf{a}_n|} = 1$ The test is inconclusive if

Especially useful for series involving nth roots.

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home Page

© G. Battaly 2017

© G. Battaly 2017