GOALS:

- 1. Use exponential equations to model growth and decay: $f(t) = A = A_0 e^{kt}$
 - a) Growth when k > 0
 - b) Decay when k < 0
- 2. Recognize that growth is limited: need a logistic model to represent carrying capacity

Study 4.5 CVC # 1-6 all; # 1-5, 15, 17, 27,31,37

Exponential Functions

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

4.5 Exponential Growth & Decay

Given: Population Growth for Iraq $A = 31.5 e^{0.019t}$ where A is in millions and t is the numbers of years after 2010

Find: Population of Iraq in 2010

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Homework

Given: Population Growth for Iraq $A = 31.5 e^{0.019t}$

where A is in millions

and t is the numbers of years after 2010

Find: Population of Iraq in 2010

31.5 million

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Homework

4.5 Exponential Growth & Decay

India: $A = 1173.1 e^{0.008t}$ Given:

Iraq: $A = 31.5 e^{0.019t}$ Japan: $A = 127.3 e^{-0.006t}$ Russia: $A = 141.9 e^{-0.005t}$

Find: Which countries have a decreasing population?

Find: By what percentage is the population decreasing each year?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Homework

2 ©G. Battaly 2016

Given: India: $A = 1173.1 e^{0.008t}$

Iraq: $A = 31.5 e^{0.019t}$ Japan: $A = 127.3 e^{-0.006t}$ Russia: $A = 141.9 e^{-0.005t}$

Find: Which countries have a decreasing population?

Russia and Japan, because k < 0

Find: By what percentage is the population decreasing each year?

Russia 0.6%, bec. k=-0.006 = -0.6% or 0.6% decline Japan 0.5%, bec. k=-0.005 = -0.5% or 0.5% decline

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Homework

4.5 Exponential Growth & Decay

Given: India: $A = 1173.1 e^{0.008t}$

Find: When will India's population be 1491 million?

 ${\bf Class\ Notes:\ Prof.\ G.\ Battaly, We stchester\ Community\ College, NY}$

College Algebra & Trig Home Page

Homework

Given: India: $A = 1173.1 e^{0.008t}$

Find: When will India's population be 1491 million?

2040

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Homework

4.5 Exponential Growth & Decay

Given: An artifact has 16 gms of C-14. The decay model below describes the amount of C-14 present after t years. $A = 16 e^{-0.000121t}$

Find: How many gms of C-14 will be present in 11,430 years?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Homework

Given: An artifact has 16 gms of C-14. The decay model below describes the amount of C-14 present after t years. $A = 16 e^{-0.000121t}$

Find: How many gms of C-14 will be present in 11,430 years?

~4gm

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

4.5 Exponential Growth & Decay

 $A = A_0 e^{rt}$

Given: The half-life of Plutonium-239 is 25,000 years.

Find: If 16 gm of plutonium-239 are initially present, how many grams are present after 25,000 yrs? after 50,000 yrs? after 65,000 yrs?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Homework

Given: The half-life of Plutonium-239 is 25,000 years. Find: If 16 gm of plutonium-239 are initially present, how many grams are present after 25,000 yrs? after 50,000 yrs? after 65,000 yrs?

in 25,000 year, half left: A = 16 gm/2 = 8 gm

in 50,000 year, half of 25,000 yr am't left:

A = 8 gm/2 = 4 gm

65,000 not multiple of 25,000 need to use equation $A = A_o e^{rt}$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Homework

4.5 Exponential Growth & Decay

Given: The half-life of Plutonium-239 is 25,000 years. Find: If 16 gm of plutonium-239 are initially present, how many grams are present after 25,000 yrs? after 50,000 yrs?

$$A_o/2 = A_o e^{r(25,000)}$$
 $A = A_o e^{rt}$
 $1/2 = e^{r(25,000)}$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Homework

Given: The half-life of Plutonium-239 is 25,000 years. Find: If 16 gm of plutonium-239 are initially present, how many grams are present after 25,000 yrs? after 50,000 yrs? after 65,000 yrs?

$$A_{o}/2 = A_{o} e^{r} (25,000)$$
 $A = A_{o} e^{rt}$
 $1/2 = e^{r} (25,000)$
 $In(1/2) = In(e^{25,000r})$
 $In1 - In2 = 25,000r In e = 25,000r$
 $r = In1 - In2 = -0.00002773$
 $25,000$
 $A = 16 e^{-0.00002773t}$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Homework

4.5 Exponential Growth & Decay

Given: The half-life of Plutonium-239 is 25,000 years. Find: If 16 gm of plutonium-239 are initially present, how many grams are present after 25,000 yrs? after 50,000 yrs? after 65,000 yrs?

$$A = 16 e^{-0.00002773t}$$

$$A = A_0 e^{rt}$$

$$A = 16 e^{-0.00002773(65,000)}$$

= 2.638 gm

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Homework