- 1. Solve Exponential Equations by:
 - a) Rewriting in exponential form
 - b) Converting to logarithmic form
 - c) Find the log of both members of the equation
- 2. Solve Logarithmic Equations by:
 - a) Converting to exponential form
 - b) Using properties of logarithms
 - c) Checking solution to be sure it is in the domain of the function.

$$y = log_b x \ x > 0, b > 0, b \neq 1$$

Study 4.4 CVC # 1-11 all # 1-5,9,13,17,21; 23-27,31,35,39,43; 49,53,57, ...89;103

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Homework

4.4 Exponential & Logarithmic Equations

To solve an exponential equation:

1. If possible, **rewrite** both members of the eq. as **a power of the same base**. Then set the **exponents equal** to each other, and solve.

```
eg: 2^x = 32 then 2^x = 2^5 and x = 5.
```

2. If step 1 is not possible, **convert to logarithmic form**, or **find** either the *log* or the *ln* of both members of the equation.

Use properties of logarithms to solve.

```
eg: 10^x = 8.06 then \log 8.06 = x
or \log 10^x = \log 8.06
x \log 10 = \log 8.06 or x = \log 8.06
```

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Properties of Logs

To solve an exponential equation:

1. If possible, **rewrite** both members of the eq. as **a power of the same base**. Then set the **exponents equal** to each other, and solve.

eg:
$$2^x = 32$$
 then $2^x = 2^5$ and $x = 5$.

Solve for x:
$$5^x = 625$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Properties of Logs

4.4 Exponential & Logarithmic Equations

To solve an exponential equation:

1. If possible, **rewrite** both members of the eq. as **a power of the same base**. Then set the **exponents equal** to each other, and solve.

eg:
$$2^x = 32$$
 then $2^x = 2^5$ and $x = 5$.

Solve for x: $5^{x} = 625$

 $5^{x} = 5^{4}$

x = 4

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Properties of Logs

To solve an exponential equation:

1. If possible, **rewrite** both members of the eq. as **a power of the same base**. Then set the **exponents equal** to each other, and solve.

eg:
$$2^x = 32$$
 then $2^x = 2^5$ and $x = 5$.

Solve for x:
$$9^x = \frac{1}{\sqrt[3]{3}}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

4.4 Exponential & Logarithmic Equations

To solve an exponential equation:

1. If possible, **rewrite** both members of the eq. as **a power of the same base**. Then set the **exponents equal** to each other, and solve.

eg:
$$2^x = 32$$
 then $2^x = 2^5$ and $x = 5$.

Solve for x:
$$9^x = 1$$

$$(3^2)^x = 3^{(-1/3)}$$

$$3^{2x} = 3^{(-1/3)}$$

$$2x = -1/3$$

$$x = -1/6$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

3. If step 2 is not possible, **convert to logarithmic form**, or **find** either the *log* or the *ln* of both members of the equation. **Use properties of logarithms** to solve.

```
eg: 10^x = 8.06 then log 8.06 = x
or log 10^x = log 8.06
x log 10 = log 8.06 or x = log 8.06
```

Solve for x: $10^{x} = 0.9$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Properties of Logs

4.4 Exponential & Logarithmic Equations

3. If step 2 is not possible, **convert to logarithmic form**, or **find** either the *log* or the *ln* of both members of the equation. **Use properties of logarithms** to solve.

```
eg: 10^x = 8.06 then log 8.06 = x
or log 10^x = log 8.06
x log 10 = log 8.06 or x = log 8.06
```

Solve for x: $10^{x} = 0.9$

either: log 0.9 = x

or: $log 10^x = log 0.9$

 $x \log 10 = \log 0.9$ $x = \log 0.9$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

3. If step 2 is not possible, **convert to logarithmic form**, or **find** either the *log* or the *ln* of both members of the equation. **Use properties of logarithms** to solve.

```
eg: 10^x = 8.06 then \log 8.06 = x
or \log 10^x = \log 8.06
x \log 10 = \log 8.06 or x = \log 8.06
```

Solve for x: $e^x = 0.83$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Properties of Logs

4.4 Exponential & Logarithmic Equations

3. If step 2 is not possible, **convert to logarithmic form**, or **find** either the *log* or the *ln* of both members of the equation. **Use properties of logarithms** to solve.

```
eg: 10^x = 8.06 then \log 8.06 = x
or \log 10^x = \log 8.06
x \log 10 = \log 8.06 or x = \log 8.06
```

Solve for x: $e^x = 0.83$

either: In 0.83 = x

or: $\ln e^x = \ln 0.83$

 $x \ln e = \ln 0.83$ $x = \ln 0.83$

 $Class\ Notes:\ Prof.\ G.\ Battaly, We stchester\ Community\ College, NY$

College Algebra & Trig Home Page

3. If step 2 is not possible, **convert to logarithmic form**, or **find** either the *log* or the *ln* of both members of the equation. **Use properties of logarithms** to solve.

```
eg: 10^x = 8.06 then log 8.06 = x
or log 10^x = log 8.06
x log 10 = log 8.06 or x = log 8.06
```

Solve for x:
$$e^{4x-5} - 7 = 243$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Properties of Logs

4.4 Exponential & Logarithmic Equations

3. If step 2 is not possible, **convert to logarithmic form**, or **find** either the *log* or the *ln* of both members of the equation. **Use properties of logarithms** to solve.

```
eg: 10^x = 8.06 then log 8.06 = x
or log 10^x = log 8.06
x log 10 = log 8.06 or x = log 8.06
```

Solve for x: $e^{4x-5} - 7 = 243$

$$e^{4x-5} = 250$$

either: In 250 = 4x-5

or:
$$\ln e^{4x-5} = \ln 250$$

$$(4x-5) \ln e = \ln 250$$

 $4x-5 = \ln 250$
 $4x = \ln 250 + 5$
 $x = (\ln 250 + 5) / 4$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Properties of Logs

To solve a logarithmic equation:

1. Convert to exponential form and solve.

eg:
$$\log_5 x = 3$$
 then $5^3 = x$ and $x = 125$

2. Use Properties of Logarithms to obtain the form $log_b M = log_b N$ Then M = N

Then
$$M =$$
 eg: $3 \log x = \log 125$

$$\log x^3 = \log 125$$

then:
$$x^3 = 125$$
 and: $x = 5$

3. Check that solution is in the domain.

$$y = log_b x \ x > 0, \ b > 0, \ b \neq 1$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Properties of Logs

4.4 Exponential & Logarithmic Equations

To solve a logarithmic equation:

- 1. Convert to exponential form and solve.
- eg: $\log_5 x = 3$ then $5^3 = x$ and x = 125
- 3. Check that solution is in the domain.

Solve for x: $\log_5 (x-7) = 2$

$$y = log_b x \ x > 0, \ b > 0, \ b \neq 1$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Properties of Logs

To solve a logarithmic equation:

- 1. Convert to exponential form and solve. eg: $log_5 x = 3$ then $5^3 = x$ and x = 125
- 3. Check that solution is in the domain.

Solve for x:
$$\log_5 (x-7) = 2$$

then
$$5^2 = x - 7$$

and
$$x = 25 + 7 = 32$$

check:
$$x - 7 = 32 - 7 > 0$$

$$v = log_b x \ x > 0, \ b > 0, \ b \neq 1$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Properties of Logs

4.4 Exponential & Logarithmic Equations

To solve a logarithmic equation

2. Use Properties of Logarithms to obtain the form log_b M = log_b N

Then
$$M = N$$

eg:
$$3 \log x = \log 125$$
 $\log x^3 = \log 125$

then:
$$x^3 = 125$$
 and: $x = 3$. Check that solution is in the domain.

Solve for x:
$$\log (5x+1) = \log (2x+3) + \log 2$$

$$\log (5x+1) = \log [2(2x+3)]$$

$$\log (5x+1) = \log [4x+6]$$

$$5x+1 = 4x+6$$

$$x = 5$$

$$y = log_b x \ x > 0, \ b > 0, \ b \neq 1$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Properties of Logs

4.3 Properties of Logarithms

Properties of Logarithms

- 1. $\log_b(1) = 0$
- 2. $\log_b(b) = 1$
- 3. $log_b(MN) = log_b(M) + log_b(N)$
- 4. $log_b \underline{M} = log_b(M) log_b(N)$
- 5. $\log_b M^n = n \log_b(M)$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Homework

4.4 Exponential & Logarithmic Equations

Solve for x:
$$\log(x-2) + \log 5 = \log 100$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Solve for x:
$$\log(x-2) + \log 5 = \log 100$$

$$log[5(x-2)] = log 100$$

$$5(x-2) = 100$$

$$x - 2 = 20$$

$$x = 22$$

$$y = log_b x \ x > 0, \ b > 0, \ b \neq 1$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

4.4 Exponential & Logarithmic Equations

Solve for x:
$$\log_4(x+2) - \log_4(x-1) = 1$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

© G. Battaly 2016

Solve for x:
$$\log_4(x+2) - \log_4(x-1) = 1$$

$$\log_4\left[\frac{(x+2)}{(x-1)}\right] = 1$$

$$4^1 = \frac{(x+2)}{(x-1)}$$

$$4(x-1) = \frac{(x+2)}{(x-1)}$$

$$4x - 4 = x + 2$$

$$3x = 6$$

$$x = 2$$

$$\log_4(2+2) - \log_4(2-1)$$

$$\log_4(4) - \log_4(1) \quad \text{OK } x=2 \text{ is in the domain}$$

$$y = \log_b x \quad x > 0, \ b > 0, \ b \neq 1$$
Class Notes: Prof. G. Battaly, Westchester Community College, NY

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework

4.4 Exponential & Logarithmic Equations

$$6 \ln(2x) = 30$$

7 + 3 ln x = 6

$$3^{x/7} = 0.2$$

$$7^{(2x+1)} = 3^{(x+2)}$$

$$2^{2x} + 2^{x} - 12 = 0$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

$$6 \ln(2x) = 30$$

$$ln(2x) = 5$$

$$e^5 = 2x$$

$$x = e^{5}$$

$$7 + 3 \ln x = 6$$

$$3 \ln x = -1$$

$$\ln x = -1/3$$

$$e^{-1/3} = x$$

$$x = 1$$

$$e^{1/3}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

4.4 Exponential & Logarithmic Equations

$$3^{x/7} = 0.2$$

$$\log 3^{x/7} = \log 0.2$$

$$\frac{\mathbf{x}}{7}\log 3 = \log 0.2$$

$$x = 7 \frac{\log 0.2}{\log 3}$$

or

$$log_3 0.2 = x/7$$

$$x = 7 \log_3 0.2$$

$$7(2x+1) = 3(x+2)$$

$$\log 7^{(2x+1)} = \log 3^{(x+2)}$$

$$(2x+1)\log 7 = (x+2)\log 3$$

$$2x\log 7 + 1\log 7 = x\log 3 + 2\log 3$$

$$-x\log 3 - 1\log 7 = -x\log 3 - 1\log 7$$

$$x(2\log 7 - \log 3) = 2\log 3 - \log 7$$

$$x = \frac{2\log 3 - \log 7}{2\log 7 - \log 3}$$

$$X = \frac{\log(9/7)}{\log(49/3)} = 0.08997$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

$$2^{2x} + 2^{x} - 12 = 0$$

 $u^{2} + u - 12 = 0$
 $(u + 4) (u - 3) = 0$
 $u + 4 = 0$ $u - 3 = 0$
 $u = -4$ $u = 3$
 $2^{x} = -4$ $2^{x} = 3$
 $4^{x} = 4$ $4^{x} = 3$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Homewor

© G. Battaly 2016